全量化(权重和激活量化) 结语 近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,从而导致模型变得越来越大,因此,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。 模型压缩主要分为如下几类: 剪枝(Pruning) 知识蒸馏(Knowledge Distillation) 量化Quantization) 本系列...
1. 什么是量化 量化是大模型领域中的一项关键技术,它通过降低模型参数的精度,将浮点数转换为整数或定点数,从而实现模型的压缩和优化。这样做的主要目的是减少模型的存储需求、加快推理速度,并降低模型的计算复杂度,使得大模型能够更高效地在资源受限的设备上运行,例如移动设备、嵌入式系统等场景。 2. 精度 先来看下...
量化是一种将较大尺寸的模型(如 LLM 或任何深度学习模型)压缩为较小尺寸的方法。量化主要涉及对模型的权重参数和激活值进行量化。让我们通过一个简单的模型大小计算来验证这个说法。 左侧:基础模型大小计算(单位:GB),右侧:量化后的模型大小计算(单位:GB) 在上图中,基础模型...
大模型量化,简单来说,就是将深度学习模型的浮点运算转换为整型运算的过程。在默认情况下,模型使用32位浮点数进行所有预测计算,这使得模型变得非常大。通过量化技术,我们可以将这些浮点数转换为更低精度的整数,从而显著减少模型的存储空间和计算时间。需要注意的是,量化过程中可能会损失一定的精度,但通常这种损失在可接受...
通过上述流程,我们成功地将多模态大模型转换为 gguf 格式并进行了量化。模型在 ollama 平台上即可运行,资源消耗显著降低,性能提升明显。 步骤说明讲解如下所示: 已关注关注重播分享赞关闭观看更多更多退出全屏视频加载失败,请刷新页面再试刷新视频详情 点击“阅读原文”查看详情...
微软开源1bit大模型推理框架!现在1000亿参数大模型量化后单CPU可跑,速度可达每秒5-7个token。比如在苹果M2新品上运行BitNet b1.58 3B模型,be like:就是今年爆火论文The Era of 1-bit LLMs的官方代码实现,开源不到一周GitHub已揽获7.9k Star。传统大模型参数以16位浮点数(如FP16或BF16)形式的存储,...
随着深度学习大语言模型的越来越火爆,大语言模型越做越大,使得其推理成本也水涨船高。模型量化,成为一个热门的研究课题。 近日,字节跳动语音团队推出一个全新的量化思路,抛弃传统的量化范式,从数学优化的角度来对量化任务建模。文章放在了 arXiv,代码已经开源,可以一键复现文中的所有结果: ...
虽然它没有任何的压缩和量化,但是这种方法算是一个最简单的加载大模型的方案。 比如Zephyr-7B-β,实际上已经分片了!如果进入模型并点击“Files and versions”链接,可以看到模型被分成了8个部分。 模型的分片非常简单,可以直接使用Accelerate 包: 代码语言:javascript ...
△图2 使用VLLM一键部署4比特和8比特混合精度量化并推理 MixQ已支持多个主流大模型LLaMA3,Qwen2,Baichuan2,ChatGLM等。据了解,目前MixQ开源技术已被清程极智等AI行业公司应用在实际产品中。该工作同时于高性能计算领域顶级国际会议SC’24发表,第一作者清华大学博士后陈逸东、通讯作者为翟季冬教授。研究背景:已有...
大型语言模型(LLMs)通常因为体积过大而无法在消费级硬件上运行。这些模型可能包含数十亿个参数,通常需要配备大量显存的GPU来加速推理过程。 因此越来越多的研究致力于通过改进训练、使用适配器等方法来缩小这些模型的体积。在这一领域中,一个主要的技术被称为量化。