10月4日,谷歌旗下著名AI研究机构DeepMind在官网发布了,全球最大通用大模型之一RT-X,并开放了训练数据集Open X-Embodiment。 据悉,RT-X由控制模型RT-1-X和视觉模型RT-2-X组成,在特定任务(搬运东西、开窗等)的工作效率是同类型机器人的3倍,同时可执行未训练动作。 Open X-Embodiment训练数据集由全球33家顶级学...
1.采用视觉语言模型进行机器人控制RT-2以视觉-语言模型(VLMs)为基础,将一个或多个图像作为输入,并生成一系列通常表示自然语言文本的标记。此类VLMs已经在大规模网络的数据上成功训练,用于执行视觉问答、图像字幕或对象识别等任务。
在所有类别中,与之前的基线相比(例如之前在大规模视觉数据集上预训练的RT-1模型和Visual Cortex(VC-1)等模型),RT-2的泛化性能提高到了3倍以上。RT-2在机器人数据中保持了对原始任务的性能,并提高了机器人在之前未曾见过的情景上的性能,从RT-1的32%提高到62%,显示了大规模预训练的显著好处。思维链推...
在Google DeepMind的论文中介绍了Robotics Transformer 2(RT-2),一个全新的视觉-语言-动作(VLA)模型,它从网络和机器人数据中学习,并将这些知识转化为机器人控制的通用指令,同时保留了web-scale能力。 一个在web-scale数据上进行预训练的视觉-语言模型(VLM)正在从RT-1的机器人数据中学习,以成为可以控制机器人的视...
谷歌近日推出全新机器人大模型RT-2,作为DeepMind与谷歌大脑合并后新成果,由54位研究员合作,耗时7个月打造,进一步提高泛化与推理能力,实现机器人自主学习。 美国斯坦福大学李飞飞团队,近日发布具身智能研究最新成果VoxPoser,将大模型接入机器人,把复杂指令转化成具体行动规划,人类可随意用自然语言给机器人下达指令,机器人...
1.采用视觉语言模型进行机器人控制 RT-2以视觉-语言模型(VLMs)为基础,将一个或多个图像作为输入,并生成一系列通常表示自然语言文本的标记。此类VLMs已经在大规模网络的数据上成功训练,用于执行视觉问答、图像字幕或对象识别等任务。在Google DeepMind的工作中,将Pathways Language and Image model(PaLI-X)和 Pathways...
但前提是要使用高容量的模型架构。RT-2-X(55B)是迄今为止在学术实验室中执行看不见任务的最大模型...
大语言模型不仅能让应用变得更智能,还将让机器人学会举一反三。在谷歌发布RT-1大模型仅半年后,专用于机器人的RT-2大模型于近期面世,它能让机器人学习互联网上的文本和图像,并具备逻辑推理能力。 该模型为机器人智能带来显著升级——即便在机器人没有经历过的场景下,RT-2也通过学习让它根据指令完成任务。
01:RT中的角分线和中垂线 上次的三角形新模型中也有一个角平分线和中线的交点,(点击查看原文:一般三角形中的重要线段,相关模型),结论是该交点和三角形三顶点四点共圆。 这次是等腰结论: 02:ZRT中的外正方形 (风车图) 以RT三角形个边为边做正方形,会有怎么样的结论...
大模型风起云涌,正在从虚拟世界进入现实世界。谷歌DeepMind日前推出 Robotic Transformer 2(简称RT-2)大语言模型,让人类可以通过纯语言命令优化机器人控制,迈出了重要一步。 不同于此前的大模型,这是一个“视觉-语言-动作”(vision-language-action,简称VLA)模型。业界认为,谷歌此举是想打造可以适应人类环境的通用机...