智能体的保存和加载 OpenRL提供agent.save()和agent.load()接口来保存和加载训练好的智能体,并通过agent.act() 接口来获取测试时的智能体动作: # test_ppo.pyfromopenrl.envs.commonimportmakefromopenrl.modules.commonimportPPONetasNetfromopenrl.runners.commonimportPPOAgentasAgentfromopenrl.envs.wrappersimportGIF...
为了应对这些需求,我们提出了 MALib,从三个方面提出了针对大规模群体多智能体强化学习算法的解决方案:(1)中心化任务调度:自动递进式生成训练任务,作业进程的半主动执行能够提高训练任务的并行度;(2)Actor-Evaluator-Learner 模型:解耦数据流,以满足多节点灵活的数据存储和分发;(3)从训练层面对多智能体强化学习进行抽象...
基于种群的多智能体深度强化学习(PB-MARL)方法在星际争霸、王者荣耀等游戏AI上已经得到成功验证,MALib 则是首个专门面向 PB-MARL 的开源大规模并行训练框架。MALib 支持丰富的种群训练方式(例如,self-play, P…
作业进程的半主动执行能够提高训练任务的并行度;(2)Actor-Evaluator-Learner 模型:解耦数据流,以满足多节点灵活的数据存储和分发;(3)从训练层面对多智能体强化学习进行抽象:尝试提高多智能体算法在不同训练模式之间的复用率,比如 DDPG 或者 DQN 可以很方便地嫁接...
OpenRL 是由第四范式强化学习团队开发的基于PyTorch的强化学习研究框架,支持单智能体、多智能体、自然语言等多种任务的训练。OpenRL基于PyTorch进行开发,目标是为强化学习研究社区提供一个简单易用、灵活高效、可持续扩展的平台。目前,OpenRL支持的特性包括:
基于种群的多智能体深度强化学习(PB-MARL)方法在星际争霸、王者荣耀等游戏AI上已经得到成功验证,MALib 则是首个专门面向 PB-MARL 的开源大规模并行训练框架。MALib 支持丰富的种群训练方式(例如,self-play, PSRO, league training),并且实现和优化了常见多智能体深度强化学习算法,为研究人员降低并行化工作量的同时,...
强化学习研究框架 OpenRL 是基于 PyTorch 开发的,已经在 GitHub 上开源。 OpenRL 是由第四范式强化学习团队开发的基于 PyTorch 的强化学习研究框架,支持单智能体、多智能体、自然语言等多种任务的训练。OpenRL 基于 PyTorch 进行开发,目标是为强化学习研究社区提供一个简单易用、灵活高效、可持续扩展的平台。目前,OpenR...
OpenRL 是由第四范式强化学习团队开发的基于PyTorch的强化学习研究框架,支持单智能体、多智能体、自然语言等多种任务的训练。OpenRL基于PyTorch进行开发,目标是为强化学习研究社区提供一个简单易用、灵活高效、可持续扩展的平台。目前,OpenRL支持的特性包括:
基于种群的多智能体深度强化学习(PB-MARL)方法在星际争霸、王者荣耀等游戏AI上已经得到成功验证,MALib 则是首个专门面向 PB-MARL 的开源大规模并行训练框架。MALib 支持丰富的种群训练方式(例如,self-play, PSRO, league training),并且实现和优化了常见多智能体深度强化学习算法,为研究人员降低并行化工作量的同时,...
OpenRL 是由第四范式强化学习团队开发的基于PyTorch的强化学习研究框架,支持单智能体、多智能体、自然语言等多种任务的训练。OpenRL基于PyTorch进行开发,目标是为强化学习研究社区提供一个简单易用、灵活高效、可持续扩展的平台。目前,OpenRL支持的特性包括: