https://www.zhihu.com/people/deelida/zvideos 1 Kmeans聚类算法基本原理 K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。 以彩色图像为例:基于彩色图像的RGB三通道为xyz轴建立空间直角坐标系,那么一副图像上...
K-means聚类算法的基本思想是以空间中K个点为中心进行聚类,对最靠近它们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。算法的关键步骤包括: 初始化:随机选择K个数据点作为初始的聚类中心。 分配数据点到最近的聚类中心:对于数据集中的每个数据点,计算其到每个聚类中心的距离,并将其分...
基于欧式距离的 K-means假设了各个数据簇的数据具有一样的的先验概率并呈现球形分布,但这种分布在实际生活中并不常见。面对非凸的数据分布形状时我们可以引入核函数来优化,这时算法又称为核 K-means 算法,是核聚类方法的一种。核聚类方法的主要思想是通过一个非线性映射,将输入空间中的数据点映射到高位的特征空间中...
k-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。对于给定的一个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式距离作为相似度指标,聚类目标是使得各类的聚类平方和最小,即最小化。 结合...
1.程序功能描述 K-means属于聚类分析中一种基本的划分方法,常采用误差平方和准则函数作为聚类准则。主要优点是算法简单、快速而且能有效地处理大数据集。研究和分析了聚类算法...
北银金科申请一种基于 K-MEANS 算法的广告投放系统,减少用户的资源浪费 金融界 2024 年 9 月 11 日消息,天眼查知识产权信息显示,北银金融科技有限责任公司申请一项名为“一种基于 K-MEANS 算法的广告投放系统“,公开号 CN202410716393.X,申请日期为 2024 年 6 月。专利摘要显示,本发明提供的一种基于 K‑...
摘要:基于K-means算法思想改进蚁群聚类算法聚类规则,提出一种新的K-means蚁群聚类算法,并通过实验验证其聚类效果;引入具有全局最优性的支持向量机SVM,取各类中心附近适当数据训练支持向量机,然后利用已获模型对整个数据集进行重新分类,进一步优化聚类结果,使聚类结果达到全局最优。UCI数据集实验结果表明,新的算法可以明显...
k-means算法是一种基于划分的聚类算法,以距离作为数据对象间相似性度量的标准,即数据对象间的距离越小,则它们的相似性越高,则它们越有可能在同一个类簇。数据对象间距离的计算有很多种,k-means算法通常采用欧氏距离来计算数据对象间的距离。 其中,D表示数据对象的属性个数。
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地 选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。 这个过程不断重复,直到...
本期我们将一起实现基于K-Means聚类算法的主色提取。在深入研究代码之前,让我们先了解一下K-Means算法的背景知识。 02.K均值类聚算法 K-Means算法是最流行但最简单的无监督算法。对于散布在n维空间中的所有数据点,它会将具有某些相似性的数据点归为一个群集。在随机...