目录 收起 1 概述 一、引言 二、K-means聚类算法概述 三、K-means聚类算法在图像分割中的应用 1. 灰度图像分割 2. 彩色图像分割 四、K-means聚类算法的优缺点及改进方法 优点 局限性 改进方法 五、实验与结果分析 六、结论与展望 2 运行结果 3 参考文献 4 Matlab代码实现...
1 简介 对图像进行颜色区域分割.将图像转换到CIE Lab颜色空间,用K均值聚类分析算法对描述颜色的a和b通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对图像进行分割处理.实验结果表明,在CIE Lab空间使用K—means聚类算法可以有效地分割彩色纺织品图像的颜色区域. 2 完整代码 clear all; close all; clc;...
【图像分割】基于matlab Kmean聚类分水岭、oust、粒子群算法优化脂肪肝图像分割【含Matlab源码 2277期】(1)如需代码可扫描视频里QQ二维码;(2)代码运行版本Matlab 2019b或2014a(3)其他仿真咨询1 期刊或参考文献复现;2 Matlab程序定制;3 科研合作;, 视频播放量 171
function[mu,mask]=kmeans(ima,k) %功能:运用k-means算法对图像进行分割 %输入:ima-输入的灰度图像k-分类数 %输出:mu-均值类向量mask-分类后的图像 ima=double(ima); copy=ima; ima=ima(:); mi=min(ima); ima=ima-mi+1; s=length(ima); %计算图像灰度直方图 m=max(ima)+1; h=zeros(1,m); ...
简介:【图像分割】基于区域生长算法和Kmean聚类算法实现图像分割附matlab代码 1 简介 区域生长算法的基本思想是将具有相似性质(例如,颜色,亮度,纹理)的像素集合起来构成区域。具体实现时先确定一组种子像素作为生长的起点, 再将种子像素周围邻域中与种子像素有相同或相似性质的像素 (根据某种事先确定的生长或相似准则来...
利用matlab软件,通过K-means算法的方法处理给定的7幅遥感图像,将其分成水域、居民区和其他三类区域。 二 实验方法: 1 遥感图像的分类[1] 遥感图像是通过反映地物光谱信息的像元亮度值及反映地物空间信息的像元空间变化来表征不同地物的。对遥感图像中各类地物的光谱信息和空间信息进行分析,选择特征(能够反映地物光谱信...
通过K-means算法,并用matlab程序来实现,将给定了7幅遥感图像通过处理,分成水域、居民区和其他三类区域。并用RGB彩色进行标记划分,这样看起来更易识别。 上述的K-means算法是在类别数k给定的情况下进行的。当类别数未知的情况下,在使用k-均值算法时,可以假设类别数是逐步增加的。例如,对k=1,k=2,k=3,…,分别...
麻雀搜索算法是一种基于群体智能的算法,它的基本思想是将问题抽象为一个个体的适应度函数,在群体的协作下逐步逼近最优解。在图像分割问题中,麻雀搜索算法可以被用作优化KMeans算法的初始化和结果后处理,从而对图像进行更精确的分割。 具体实现步骤如下: 1. 对输入图像进行预处理,例如缩小或降采样,以节省计算资源和...
k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地 选择k个对象,每个对象初始...
1 概述 麻雀搜索算法是一种基于群体智能的优化算法,其核心在于通过群体协作逐步寻优。在图像分割领域,麻雀搜索算法被应用于KMeans算法的优化,旨在通过改进初始化和结果处理方式,实现更精准的图像分割。具体实现步骤如下:1. 对输入图像进行预处理,如缩小或降采样,以节省计算资源和时间。2. 初始化麻雀...