均值滤波是最简单、计算复杂度最低的方法,在去除高斯噪声和低频噪声方面效果较差,但对边缘信息的保留效果较差。高斯滤波通过加权平均的方式更好地保留了图像的细节和边缘信息,适用于处理高斯噪声并且具有一定的平滑效果。中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,并保持了图像的边缘信息,但对于高斯噪声和高频噪声则效果较差。
//均值滤波intMPT_test_blur(){cv::Mat dst;cv::Mat src=cv::imread("../image/beauty.jpg",cv::IMREAD_COLOR);cv::blur(src,dst,cv::Size(5,5));cv::namedWindow("src",0);cv::imshow("src",src);cv::namedWindow("均值滤波",0);cv::imshow("均值滤波",dst);cv::waitKey(0);return0;...
均值滤波、中值滤波、高斯滤波的公式如下:1.均值滤波:使用邻域平均法,用均值代替原图像中的各个像素值。设有一个滤波模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度g(x,y),即g(x,y)=∑f(x,y)/m m为该模板中...
接下来将详细介绍OpenCV中常用的一些滤波器,包括均值滤波、方框滤波、高斯吕波、中值滤波等,如表所示。 下图为这五种滤波的效果对比,从滤波的结果可以看出各种滤波算法对图像的作用非常不同,有些变化非常大,有些甚至跟原图一样。在实际应用时,应根据噪声的特点、期望的图像和边缘特征等来选择合适的滤波器,这样才能发...
5. 双边滤波 双边滤波对于图像的边缘信息能够更好的保存,其原理为一个与空间距离相关的高斯函数与一个灰度距离相关的高斯函数相乘。美颜、磨皮效果;双边滤波对椒盐噪声基本没效果 bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]])双边滤波 ...
均值滤波计算均值,中值滤波计算中值,高斯滤波计算卷积值。窗口大小L的设定一般为2k+1,每次计算窗口中心位置的值。 该种策略下,在边缘区域窗口输出的位置是无法覆盖到的,因此需要特定的方式进行处理。处理的方式通常有四种:不作处理、只计算窗口包含区域、外周填充0、外周填充邻近元素值或指定值。
均值滤波器: 模板: 从待处理图像首元素开始用模板对原始图像进行卷积,均值滤波直观地理解就是用相邻元素灰度值的平均值代替该元素的灰度值。 高斯滤波器: 模板:通过高斯内核函数产生的 高斯内核函数: 例如3*3的高斯内核模板: 中值滤波:同样是空间域的滤波,主题思想是取相邻像素的点,然后对相邻像素的点进行排序,取...
四、非线性滤波算法 (一)中值滤波 原理 中值滤波是一种典型的非线性滤波算法,它的基本思想是用像素...
根据滤波器的不同可以分为:均值滤波、高斯滤波、中值滤波、双边滤波 我们认为高频信息就是噪声,低频信息就是有用的内容。1、均值滤波 (1)api介绍 (2)实例分析 import cv2 as cv import numpy as np import matplotlib.pyplot as plt from matplotlib import font_manager #字体设置 my_font = font_manager...
以下是使用MATLAB实现的图像去噪方法,包括均值滤波、中值滤波、高斯低通滤波以及多种小波变换。为了方便读者理解和使用,我们还将提供一个GUI界面。一、均值滤波均值滤波是一种简单的平滑方法,通过将像素邻域的平均值赋给中心像素来减少噪声。以下是均值滤波的MATLAB代码示例: function [output_image] = mean_filter(input...