主成分分析(PCA)和因子分析(FA)是两种常用的降维统计方法,核心差异体现在原理、假设条件、求解方法和应用场景等方面。主成分分析通过线性
方式不同:1、主成分分析:通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。2、因子分析:通过从变量群中提取共性因子,因子分析可在许多变量中找出隐藏的具有代表性的因子。 作用体现不同: 1、主成分分析: 主成分分析作为基础的数学分析方法,其实际应用十分广泛,比如人...
与主成分分析时第一主成分的方差贡献率47.429%相比有所下降;第二公因子的因子方差贡献率为41.684%,这与主成分分析时第二个主成分的方差贡献率38.740%相比有所上升;两个公因子的累计方差贡献率与主成分分析时两个主成分的累计
分析上表可知,特征根大于1的因子共有两个,说明本次分析提取2个公因子。这2个公因子的累计方差解释率为78.808%,第一个因子的方差解释率为41.346%,第二个因子的方差解释率为37.462%,说明提取的两个公因子能够代表原来6个铁路运输能力指标78.808%的信息,整体来看信息变量丢失较少,因子分析效果比较理想。 【提示】:一...
(1)主成分分析是按照方差最大化的方法生成的新变量,强调新变量贡献了多大比例的方差,不关心新变量是否有明确的实际意义。 (2)因子分析着重要求新变量具有实际的意义,能解释原始变量间的内在结构。 SPSS没有提供单独的主成分分析方法,而是混在因子分析当中,下面通过一个例子来讨论主成分分析与因子分析的实现方法及相关...
因子分析和主成分分析的基本思想是将一组观测变量转化为一组新的、不相关的变量(主成分或因子),以保留原始数据中的关键信息。 主成分分析(PCA)是一种线性降维方法,它通过寻找原始数据中方差最大的方向(主成分),将原始数据映射到一个低维子空间中。这些主成分是原始数据中的线性组合,但它们是彼此正交的,也就是说...
还有你用了这个方法之后准备用来做什么。可以做,可以去经管之家论坛上搜索全局因子分析和全局主成分分析...
图中横轴表示第一个主成分与原始变量间的相关系数;纵轴表示第二个主成分与原始变量之间的相关系数 2.1 因子分析的基本原理 2.2 因子分析的数学模型 2.3 因子分析的步骤 2.4 因子分析的Stata命令 13.2 因子分析 因子分析可以看作是主成分分析的推广和扩展,但它对问题的研究更深入、更细致一些。实际上,主成分分析可以...
如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。而因子分析是从显在变量去提炼潜在因子的过程。此外,主成分分析不需要构造分析模型而因子分析要构造因子模型...
主成分分析:协方差矩阵的对角元素是变量的方差; 因子分析:所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分) 9)优点不同: 因子分析:对于因子分析,可以使用旋转技术,使得因子更好的得到解释,因此在解释主成分方面因子分析更占优势;其次因子分析不是对原有变量的...