向量(vector)又称矢量,在数学中也称为欧几里得向量、几何向量,是数学中最基本的概念之一,表示既有大小(用一个非负数表示)、又有方向的量。向量最早可追溯到古希腊时期,在约公元前350年前,古希腊学者亚里士多德(Aristotle)在研究力学问题时发现两个力的合成可以用平行四边形法则得到。英国科学家艾萨克·牛顿(Isaac...
④基底法:根据平面向量的基本定理可知,平面内的任意一个向量均可以用两个不共线的向量表示,所以在求解两个向量(至少一个向量未知)的数量积时,可以先将未知向量用已知向量表示,接下来再进行计算就简单多了; ⑤极化恒等式:当两个向量共起点,...
向量:表示有方向有大小的物理量; 相量:正弦量的向量表示形式。 不管是工作中还是原来的学习中,向量和相量这两个词用哪一个都是靠输入法随缘,似乎也没有去深究过它们的区别,也没有人纠正过使用过程中的错误,不过最近看书似乎找到了合理的解释。 首先“向量”,这个顾名思义,就是一个有量(大小)又有向(方向)的...
什么是向量 在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。 如果
向量 在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。向量的记法:印刷体记作粗体的字母(如a、b、u、v),...
1向量 我们先看向量,大鼻山引用了百度引擎内容。 在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
若\vec{a}, \vec{b} 共线,则 \vec{a}\cdot \vec{b} = \pm \left | \vec{a} \right | \cdot \left | \vec{b} \right | ,因为此时 \theta=0 则\cos\theta=1,若两个向量方向相反,则认为\theta=\pi 则\cos\theta=-1。 一些运算律: ...
在数学中,向量(也称为欧几里得向量、几何向量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。向量的记法:印刷体记作黑体(粗体)的字母(如a、b...