《九章算术·商功》“斜解立方,得两堑(qiàn)堵(dǔ)斜解堑堵,其一为阳马,一为鳖(biē)臑(nào)。阳马居二,鳖臑居一,不易之率也。合两鳖臑三而一,验之以棊,其形露矣。”刘徽注:“此术臑者,背节也,或曰半阳马,其形有似鳖肘,故以名云。中破阳马,得两鳖臑,鳖臑之起数,数同而实据半,故云六而一...
【题目】 刘徽注 《九章算术·商功》 “斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以基,其形露矣.“如图一解释了由一个长方体得到“堑堵”、 “阳马”、 “鳖臑”的过程.堑堵是底面为直角三角形的直棱柱;阳马是一条侧棱垂直于底面且底面为...
《九章算术·商功》:“斜解立方,得两壍堵(qiàn dǔ).斜解壍堵,其一为阳马,一为鳖臑(biē nào).阳马居二,鳖臑居一,不易之率也.”文中所述可用下图表示: 则几何体“鳖臑”的四个面中,直角三角形的个数为;若上图中的“立方”是棱长为1的正方体,则 ...
《九章算术·商功》中记载:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑,不易之率也.”我们可以翻译为:取一长方体,分成两个一模一样的直三棱柱,称为堑堵.再沿堑堵的一顶点与相对的棱剖开,得一个四棱锥和一个三棱锥,这个四棱锥称为阳马,这个三棱锥称为鳖臑.现已知某个鳖臑的体积是1,则原长方体的...
《九章算术•商功》中记载:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也,合两鳖臑三而一,验之以棊,其形露矣”,文中“堑堵”是指底面是直角三角形,且侧棱垂直于底面的三棱柱;文中“阳马”是指底面为长方形且有一条侧棱与底面垂直的四棱锥;文中“鳖臑”是指四...
《九章算术•商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V,由该长方体斜解所得到的堑...
《九章算术·商功》:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之棊,其形露矣.”即将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图所示为鳖臑,平面,,,分别在棱,上,且,.若,则三...
【试题参考答案】《九章算术·商功》:“斜解立方,得两堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一.”下图解释了这段话中由一个长方体得到堑堵、阳马、鳖臑的过程.在一个长方体截得的堑堵和鳖臑中,若堑堵的内切球(与各面均相切)半径为1,则鳖臑体积的最小值为()
《九章算术•商功》:“斜解立方,得两塹堵,斜解塹堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以基,其形露矣.”文中“阳马”是底面为长方形且有一条侧棱与底面垂直的四棱锥.在阳马P-ABCD中,侧棱PA⊥底面ABCD,且PA=1,AB=AD=2,则点A到平面PBD的距离为( ) A. √...
《九章算术•商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”,即一个长方体沿对角线斜解(图1).得到一模一样的两个堑堵,再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱堆称为鳖臑(图4)记该长方体斜解所得到的阳马和鳖臑的体积分别为V1,V2,则V...