sum() * batch_size, loss.detach() # loss(box, cls, dfl) 2.模型结构 下面两张全景图展现的非常清晰: 可以先看图(a)再看图(b),核心思想就几个模块: (1)CBS(或ConvModule):由Conv+BN+SiLU组成。 (2)Bottleneck(或DarknetBottleneck):包含两个卷积层,先减少通道数,再增加通道数,类似颈部。 (3)C...
box_loss表示边框回归损失,即模型预测的边框与真实边框之间的差异;cls_loss是分类损失,指模型对于停车位状态(空闲或占用)分类的准确性;dfl_loss是分布式焦点损失,它是YOLOv8特有的,用于处理分类不平衡的问题。从图中可以看出,随着训练过程的进行,所有三种损失都呈现出明显的下降趋势,这表明模型在逐渐学习并改进其对...
从上图的损失函数图像中,我们可以观察到三个主要的损失指标:box_loss、cls_loss、和dfl_loss,分别代表边界框回归损失、类别损失和目标检测中使用的分布式Focal损失。在训练过程中,所有三种损失值随着迭代次数增加而持续下降,显示出模型在学习数据集的过程中性能在稳步提升。特别是box_loss和cls_loss,它们的平滑曲线表明...
在分析YOLOv8模型训练过程中的损失函数和性能指标图像时,我们首先观察到的是三个主要损失函数——box_loss、cls_loss和dfl_loss——在训练集上的表现。box_loss负责预测边界框的精确位置,cls_loss用于分类准确性,而dfl_loss通常关联于模型预测边界框的分布。所有这些损失函数随着训练的进行都呈现出下降趋势,这表明模型...
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 1/10 2.61G 1.153 1.398 1.192 81 640: 1 Class Images Instances Box(P R mAP50 m all 128 929 0.688 0.506 0.61 0.446 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size ...
首先,训练损失图显示了三个主要的损失组件:边框损失(box_loss)、分类损失(cls_loss)以及目标检测损失(dfl_loss)。所有这三个损失值随着训练周期(epochs)的增加而持续下降,这表明模型正在学习并逐步提高对目标检测任务的理解。具体来说,box_loss的下降表明模型在定位目标边界框方面变得更加精确;cls_loss的下降说明模型...
首先,训练损失图显示了三个主要的损失组件:边框损失(box_loss)、分类损失(cls_loss)以及目标检测损失(dfl_loss)。所有这三个损失值随着训练周期(epochs)的增加而持续下降,这表明模型正在学习并逐步提高对目标检测任务的理解。具体来说,box_loss的下降表明模型在定位目标边界框方面变得更加精确;cls_loss的下降说明模型...
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 3/20 13.7G 1.043 0.8968 0.9592 56 640: 1 Class Images Instances Box(P R mAP50 m all 683 693 0.722 0.506 0.581 0.344 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size ...
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准; 分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准; 动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Cio...
Loss 在前面已经提到,yolov8的检测头只包括了box的检测头和cls的检测头,不再有objectness的检测头,那么它的损失函数也就不需要再包括confidence损失,而只分为了类别损失和位置损失。 源码链接:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/utils/loss.py ...