sum() * batch_size, loss.detach() # loss(box, cls, dfl) 2.模型结构 下面两张全景图展现的非常清晰: 可以先看图(a)再看图(b),核心思想就几个模块: (1)CBS(或ConvModule):由Conv+BN+SiLU组成。 (2)Bottleneck(或DarknetBottleneck):包含两个卷积层,先减少通道数,再增加通道数,类似颈部。 (3)C...
# 将预测目标转换成相对于anchor point的box坐标return dist2bbox(pred_dist, anchor_points, xywh=False) #v8的loss除了cls loss,在box loss时除了iou loss,主要一点就是增加了dfl loss,让目标更快的聚集到于box真值更接近的2个位置(gt取整和gt取整后加1的2个box),具体可参考代码。 # IoU loss weight = ...
1、训练的时候出现box_loss、cls_loss、dfl_loss都为nan的情况,需要将训练的时候的参数进行修改,设置amp=False 2、修改之后训练的时候出现P、R、map值为NAN或者非常小,一般来说基于预训练模型来进行训练P、R、map的值都不会很低,如果出现0.0x这种一般是有点问题,这种情况可以尝试以下操作,需要到ultralytics/cfg...
loss[0] *= self.hyp.box # box gain loss[1] *= self.hyp.pose / batch_size # pose gain loss[2] *= self.hyp.kobj / batch_size # kobj gain loss[3] *= self.hyp.cls # cls gain loss[4] *= self.hyp.dfl # dfl gain return loss.sum() * batch_size, loss.detach() 总结 YOL...
首先,观察到训练过程中的边界框损失(box_loss)、分类损失(cls_loss)和分布式焦点损失(dfl_loss)均呈现出随着训练轮次增加而逐渐下降的趋势。这表明模型在识别物体位置、分类准确性以及预测分布上的性能都随着时间的推移而稳步提升。尤其值得注意的是,验证集上的损失下降趋势与训练集保持一致,这表明模型具有良好的泛化能...
从上图的损失函数图像中,我们可以观察到三个主要的损失指标:box_loss、cls_loss、和dfl_loss,分别代表边界框回归损失、类别损失和目标检测中使用的分布式Focal损失。在训练过程中,所有三种损失值随着迭代次数增加而持续下降,显示出模型在学习数据集的过程中性能在稳步提升。特别是box_loss和cls_loss,它们的平滑曲线表明...
box_loss在验证集上的表现稍微高于训练集,这是正常现象,因为验证数据未参与训练,模型在这部分数据上的表现通常会略差一些。然而,cls_loss和dfl_loss在验证集上的表现与训练集相近,这说明模型在类别识别和边界框分布预测方面具备稳健的泛化能力。 Precision和Recall两个指标为我们提供了模型预测准确性的重要视角。
首先我们可以看到对于cls. loss, YOLOv8的作者,没有使用varifocal loss,(尽管前面在loss.py作者定义了varifocal loss),而是使用了BCE loss 然后bbox loss 是 CIoU和DFL 然后这三个loss加权平均得到最终的loss # cls loss # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target...
损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失; 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式 框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub ...
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 1/10 2.61G 1.153 1.398 1.192 81 640: 1 Class Images Instances Box(P R mAP50 m all 128 929 0.688 0.506 0.61 0.446 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size ...