DCNV3和C2f结合| 轻量化的同时在数据集并有小幅涨点; YOLO轻量化模型专栏:t.csdnimg.cn/AeaEF 1.InternImage介绍 论文:arxiv.org/abs/2211.0577 代码:GitHub - OpenGVLab/InternImage: [CVPR 2023 Highlight] InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolution...
如果不这么“偏激”的让二者对立,至少YOLOV8n在训练结束后是可以让residual connection通过权重融合的方式得以消除,和原模型等价且能稍微加速。 C2f模块的残差冗余问题源于“输入特征重复用了两次",每个带有residual connection的C2f模块的最后一个bottleneck的输入会通过concat和residual connection的方式出现了两次。一次是...
二、bakebone模块轻量化参数 1.CSPPC替换c2f卷积块 论文地址:https://arxiv.org/pdf/2303.03667.pdf 如上图,其中利用了PConv模块大量降低参数量 其中 PConv(部分卷积)的基本原理是利用特征图的冗余,从而减少计算和内存访问。具体来说,PConv 只在输入通道的一部分上应用常规卷积进行空间特征提取,而保留剩余通道不变...
1.Backbone。使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块; 2.PAN-FPN。毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时...
在YOLOv8中,C2f模块的作用是提升模型的性能和准确率。通过引入C2f模块,模型能够更好地捕捉到图像中的复杂特征,从而在目标检测任务中取得更好的效果。此外,C2f模块还具有较好的扩展性,可以在不显著增加计算成本的情况下,进一步提高模型的性能。为了更深入地理解C2f模块的工作原理,我们可以从代码层面进行分析。在YOLO...
在parse_model解析函数中添加C2f类 在ultralytics/nn/tasks.py的parse_model解析网络结构的函数中,加入c2f_Attention类,如下图: 创建新的配置文件c2f_att_yolov8.yaml 在ultralytics/cfg/models/v8目录下新建c2f_att_yolov8.yaml配置文件,内容如下: ...
值是各个loss部分的权重系数,除了预测有对象的损失函数系数设置为5,其他都为1。 有无对象损失函数计算方法 其中 =5, =1。 表示最大的IOU都小于0.6时,取1。 表示0-confidence,详情见代码 AI检测代码解析 # no_object_scale = 1 # (1 - object_detections)保留阈值小于0.6的预测框 ...
二、bakebone模块轻量化参数 1.CSPPC替换c2f卷积块 论文地址:https://arxiv.org/pdf/2303.03667.pdf 如上图,其中利用了PConv模块大量降低参数量 其中 PConv(部分卷积)的基本原理是利用特征图的冗余,从而减少计算和内存访问。具体来说,PConv 只在输入通道的一部分上应用常规卷积进行空间特征提取,而保留剩余通道不变...
【个人背景】国内一线车企研究院资深算法工程师,擅长感知算法方向,在语义分割、车道线检测、2D和3D目标检测、BEV目标检测等领域,具有丰富的项目创新和落地经验。 【研究经历】曾主导多个重大项目,精通算法研究和部署端优化,以主要研究者身份,发表过CVPR多模态方向...
The research presents the YOLOv8-C2f-Faster-EMA algorithm, which optimizes the backbone, neck layer, and C2f module for underwater characteristics and incorporates an effective attention mechanism. This algorithm improves the accuracy of underwater litter detection while simplifying the...