总的来说,C2f模块是YOLOv8中一个重要的组成部分,它通过引入Bottleneck设计理念和多卷积层的处理流程,有效地提高了模型的目标检测性能和准确率。在实际应用中,我们可以利用C2f模块来改进目标检测模型的表现力,进一步优化模型的性能。同时,通过对C2f模块的深入研究和实践经验的积累,我们也可以为未来更多的深度学习模型设...
1.Backbone。使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块; 2.PAN-FPN。毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时...
Backbone部分采用的结构为Darknet53,其中包括基本卷积单元(Conv)、实现局部特征和全局特征的featherMap级别的融合的空间金字塔池化模块(SPPF),以及增加网络的深度和感受野、提高特征提取能力的C2f模块。C2f模块结构如图1所示。 图1 C2f模块结构 Neck部分采用PAN-FPN结构实现多个不同尺寸特征图的特征融合,其中同样使用了C...
这里存在一个问题,从为网络引入short paths的角度来看,concat和residual connection的作用有重合,尤其是当C2f模块中bottleneck的个数为1时,没必要既有concat又有residual connection。如果不这么“偏激”的让二者对立,至少YOLOV8n在训练结束后是可以让residual connection通过权重融合的方式得以消除,和原模型等价且能稍微加...
InternImage通过重新设计算子和模型结构提升了卷积模型的可扩展性并且缓解了归纳偏置,包括(1)DCNv3算子,基于DCNv2算子引入共享投射权重、多组机制和采样点调制。 (2)基础模块,融合先进模块作为模型构建的基本模块单元 (3)模块堆叠规则,扩展模型时规范化模型的宽度、深度、组数等超参数。 研究者基于DCNv2算子,重新设计...
创建新的配置文件c2f_att_yolov8.yaml 在ultralytics/cfg/models/v8目录下新建c2f_att_yolov8.yaml配置文件,内容如下: # Ultralytics YOLO 🚀, AGPL-3.0 license # YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect ...
二、bakebone模块轻量化参数 1.CSPPC替换c2f卷积块 论文地址:https://arxiv.org/pdf/2303.03667.pdf 如上图,其中利用了PConv模块大量降低参数量 其中 PConv(部分卷积)的基本原理是利用特征图的冗余,从而减少计算和内存访问。具体来说,PConv 只在输入通道的一部分上应用常规卷积进行空间特征提取,而保留剩余通道不变...
在ultralytics/nn/modules/block.py中的c2f_Attention类中代码相应位置添加注意力机制: 1 . 方式一:在self.cv1后面添加注意力机制 2.方式二:在self.cv2后面添加注意力机制 3.方式三:在c2f的bottleneck中添加注意力机制,将Bottleneck类,复制一份,并命名为Bottleneck_Attention,然后,在Bottleneck_Attention的cv2后面...
YOLOv8采用了新的网络结构,引入了梯度流更丰富的C2f结构,并调整了不同尺度模型的通道数。这种设计不仅提高了模型的检测精度,还增强了其灵活性。同时,YOLOv8还借鉴了其他先进模型的思想,如YOLACT的实例分割模块,进一步丰富了其功能。 3. 无锚点检测头 与之前的版本相比,YOLOv8采用了无锚点(Anchor-Free)的检测头...
骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是无脑一套参数应用所有模型,大幅提升了模型性能。不过这个 C2f 模块中存在 Split 等操作对特定硬件部署没有之前那么友好了 ...