比较YOLOv7-Tiny-SiLU和YOLOv5-N(v6.1),YOLOv7-Tiny-SiLU在速度上快127帧,准确率提高10.7%。 YOLOv7在帧率为161帧时有51.4%的AP,而相同AP的PP-YOLOE-L只有78帧,且参数l少41%。 YOLOv7-X在114FPS时,比YOLOv5-L(v6.1)99FPS的推理速度更快,同时可以提高3.9%的AP。 YOLOv7-X与YOLOv5-X(v6.1)相...
比较YOLOv7-Tiny-SiLU和YOLOv5-N(v6.1),YOLOv7-Tiny-SiLU在速度上快127帧,准确率提高10.7%。 YOLOv7在帧率为161帧时有51.4%的AP,而相同AP的PP-YOLOE-L只有78帧,且参数l少41%。 YOLOv7-X在114FPS时,比YOLOv5-L(v6.1)99FPS的推理速度更快,同时可以提高3.9%的AP。 YOLOv7-X与YOLOv5-X(v6.1)相...
YOLOv7 在速度和精度从 5 FPS 到 160 FPS 的范围内超过了所有已知的目标检测器,在 GPU V100 上所有已知的超过 30FPS 的实时目标检测器中,其最高的 AP 测试精度为 56.8%。YOLOv7-E6 对象检测器(56 FPS V100,55.9%AP)在速度和精度(AP)上分别优于基于 transformer 的检测器 SWIN-L Cascade-Mask R-CNN(...
比较YOLOv7-Tiny-SiLU和YOLOv5-N(v6.1),YOLOv7-Tiny-SiLU在速度上快127帧,准确率提高10.7%。 YOLOv7在帧率为161帧时有51.4%的AP,而相同AP的PP-YOLOE-L只有78帧,且参数l少41%。 YOLOv7-X在114FPS时,比YOLOv5-L(v6.1)99FPS的推理速度更快,同时可以提高3.9%...
YOLOv7-Tiny、YOLOv7 和 YOLOv7-W6 分别用于边缘 GPU、普通(消费者)GPU 和云 GPU。这意味着 YOLOv7-E6 和 YOLOv7-D6 以及 YOLOv7-E6E 也仅适用于高端云 GPU。尽管如此,所有 YOLOv7 模型在 Tesla V100 GPU 上的运行速度都超过了 30 FPS,超过了实时 FPS。
YOLOv7tiny烟雾浓度特征融合火灾初期常伴随着烟雾产生。为解决火灾早期烟雾浓度低、目标尺度小难以检测的问题,本文提出一种融合烟雾浓度特征的YOLOv7tiny烟雾检测改进算法。改进算法包括:①利用暗通道先验理论提取烟雾浓度特征,并将合成的αRGB图像用作检测网络的输入特征,用以增强稀薄烟雾特征;②设计light-BiFPN多尺度特征...
YOLOv7-Tiny、YOLOv7 和 YOLOv7-W6 分别用于边缘 GPU、普通(消费者)GPU 和云 GPU。这意味着 YOLOv7-E6 和 YOLOv7-D6 以及 YOLOv7-E6E 也仅适用于高端云 GPU。尽管如此,所有 YOLOv7 模型在 Tesla V100 GPU 上的运行速度都超过了 30 FPS,超过了实时 FPS。
如果我们将 YOLOv7-tiny-SiLU 与 YOLOv5-N (r6.1) 进行比较,我们的方法在 AP 上的速度提高了 127 fps,准确率提高了 10.7%。 此外,YOLOv7 161 fps 的帧率有 51.4% AP,而相同 AP 的 PPYOLOE-L 只有 78 fps 的帧率。 在参数使用方面,YOLOv7 比 PPYOLOE-L 少 41%。 如果我们将推理速度为 114 ...
从YOLOv7-Tiny 模型开始,参数刚刚超过 600 万。它的验证 AP 为 35.2%,击败了具有相似参数的 YOLOv4-Tiny 模型。 具有近 3700 万个参数的 YOLOv7 模型提供了 51.2% 的 AP,再次击败了具有更多参数的 YOLOv4 和 YOLOR 的变体。 YOLO7 系列中较大的模型,YOLOv7-X、YOLOv7-E6、YOLOv7-D6 和 YOLOv7-...
而YOLOv5nu虽然在mAP上略低于YOLOv8n,但在F1-Score上与YOLOv7-tiny持平,这可能意味着在某些情况下YOLOv5nu与YOLOv7-tiny有着类似的性能表现。不过,YOLOv7-tiny在两个指标上都是最低的,这可能表明在资源受限或需要更快速检测的场景下,它可能是一个更合适的选择,尽管牺牲了一些性能。