yolov7-e6 DowmC结构 yolov7-d6 yolov7e6e yolov7-tiny yolov7训练自己的数据集与yolov5类似,参考之前的文章。
图2. 本文网络结构图。 实验结果及结论 4. 实验结果 在VisDrone-2019和HIT-UAV两个数据集上验证,本文方法在多尺度目标检测性能方面仍优于主流模型,并且对小目标检测效果提升较大。 图3显示了YOLOv7-tiny (图3a) 和本文方法 (图3b) 在VisDrone-2019测试数据集上的检测效果比较。如图3b的蓝框所示,特别是在远景...
此篇续上篇博客《YOLOv7来临:论文详读和解析》,对YOLOv7网络结构中的一些重要模块进行学习,但在结尾处附加笔者的几处疑问,例如: 论文中提到的SiLU函数在官方仓库中并未见到 YOLOv7-Tiny目前仅提供了SiLU版本,未提供论文中的ReLU版本 官方仓库所使用的激活函数统一为LeakyR...
图3显示了YOLOv7-tiny (图3a) 和本文方法 (图3b) 在VisDrone-2019测试数据集上的检测效果比较。如图3b的蓝框所示,特别是在远景中,可以直接观察到本文方法成功探测到的小物体比图3a所示的多,这相当于降低了小物体被遗漏或错误检测的可能性。此外,还提高了目标的检测置信度和检测精度。例如,与图3a相比,图3b中红...
一、YOLOv7-Tiny概述 YOLOv7-Tiny是YOLOv7系列中的一个轻量级版本,旨在在保持较高检测精度的同时,降低模型的计算量和内存占用。通过优化网络结构和参数,YOLOv7-Tiny在速度和精度之间达到了良好的平衡,为实际应用提供了更多可能性。 二、网络结构解析 输入层:YOLOv7-Tiny的输入层可以处理不同尺寸的图片,具有较大...
Rep-PAN 结构图 今天我们基于Yolov7的开源代码,实现了其论文中的一些实验。在MS COCO的数据集上结果如...
PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8...
这种性能的提升可能是由于算法内部结构的改进,包括更好的卷积网络结构、注意力机制的引入以及更加高效的损失计算方法。对于实际应用来说,YOLOv8n的高性能使其成为在精确度和速度之间需要权衡时的理想选择。然而,对于计算资源受限的环境,YOLOv7-tiny依然有其应用的价值。这些分析结果为我们提供了在不同场景下选择适合的...
根据代码运行环境的不同(边缘 GPU、普通 GPU 和云 GPU),YOLOv7 设置了三种基本模型,分别称为 YOLOv7-tiny、YOLOv7和 YOLOv7-W6。相比于 YOLO 系列其他网络 模型 ,YOLOv7 的检测思路与YOLOv4、YOLOv5相似,其网络架构如图所示。 更详细的模型结构:...
基于上述原因,作者使用没有identity连接的RepConv结构。图4显示了作者在PlainNet和ResNet中使用的“计划型重参化卷积”的一个示例。 4.2 辅助训练模块 深度监督是一种常用于训练深度网络的技术,其主要概念是在网络的中间层增加额外的辅助头,以及以辅助损失为指导的浅层网络权...