1) RT-DETR neck代替YOLOv5 neck部分; 2)引入RTDETRDecoder 1.RT-DETR介绍 论文:https://arxiv.org/pdf/2304.08069.pdf RT-DETR(Real-TimeDEtectionTRansformer) ,一种基于 DETR 架构的实时端到端检测器,其在速度和精度上取得了 SOTA 性能 为什么会出现: YOLO 检测器有个较大的待改进点是需要 NMS ...
将RT-DETR中的检测头用到YOLOv5中,提高检测效果。 二、基本原理 原文链接: [2311.15599] UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition (arxiv.org) 摘要:近年来,端到端基于变压器的检测器(DE-TRs)取得了显著的性能。然而,DETR...
2.1、模型概览 我们提出的RT-DETR包括一个主干网络(backbone)、一个混合编码器(hybrid encoder)和一个带有辅助预测头的变换器解码器(transformer decoder)。模型架构的概览如下面的图片3所示。 具体来说,我们利用主干网络的最后三个阶段的输出特征 {S3, S4, S5} 作为编码器的输入。混合编码器通过内尺度交互(i...
2.1、模型概览 我们提出的RT-DETR包括一个主干网络(backbone)、一个混合编码器(hybrid encoder)和一个带有辅助预测头的变换器解码器(transformer decoder)。模型架构的概览如下面的图片3所示。 具体来说,我们利用主干网络的最后三个阶段的输出特征 {S3, S4, S5} 作为编码器的输入。混合编码器通过内尺度交互(intra-...
Res2Net是在ResNet模型基础上提出的一种新的模块,它的核心思想是将ResNet中的卷积分解成多个子模块,每个子模块可以利用更多的特征信息,从而增强了网络的表达能力。 与ResNet相比,Res2Net的主要优势在于它能够更好地捕捉不同尺度的特征信息。在ResNet中,每个卷积层都只能捕捉一定范围内的特征,而Res2Net通过将卷积分...
论文:https://openaccess.thecvf.com/content_ICCV_2019/papers/Lee_SRM_A_Style-Based_Recalibration_Module_for_Convolutional_Neural_Networks_ICCV_2019_paper.pdf
但是许多人脸检测器都是需要使用特别设计的人脸检测器来进行人脸的检测,而YOLOv5的作者则是把人脸检测作为一个一般的目标检测任务来看待的。 YOLOv5Face在YOLOv5的基础上添加了一个 5-Point Landmark Regression Head(关键点回归),并对Landmark Regression Head使用了Wing loss进行约束。YOLOv5Face设计了不同模型尺寸...
浙江大学等机构发布的一篇收录于CVPR2021的文章,提出了一种新的通道注意力结构,在几乎不引入参数的前提下优于大多SOTA通道注意力模型,如SE、ECA等。这篇文章虽然叫Gaussian Context Transformer,但是和Transformer并无太多联系,这里可以理解为高斯上下文变换器。
简单的低级特征聚合方法,如Global-Avg-Pooling的方式已被SENet证明是有效的方式,且一系列Bag-of-Visual-words模型也表明:用汇集局部区域所得的局部描述子,来组建成新的表示,这种方法是有效的。 故GENet针对如何从特征图中提取出好的feature context,再用于特征图间重
为了解决这些问题,我们绕过动态卷积并从点采样的角度制定上采样,这更节省资源,并且可以很容易地使用PyTorch中的标准内置函数实现。我们首先展示了一个朴素的设计,然后演示了如何逐步加强其上采样行为,以实现我们的新上采样器DySample。与以前基于内核的动态上采样器相比,DySample不需要定制CUDA包,并且具有更少的参数、...