分类损失(cls_loss):判断模型是否能够准确地识别出图像中的对象,并将其分类到正确的类别中。 边界框损失(box_loss):用于衡量模型预测的边界框与真实边界框之间的差异。 置信度损失(obj_loss):模型预测边界框覆盖对象的程度。 我们为什么需要 objectness loss? 对于每个边界框的预测,都会有一个与之相关的预测值,称...
横坐标代表的是训练轮数(epoch) obj(Objectness):推测为目标检测loss均值,越小目标检测越准。 cls(Classification):推测为分类loss均值,越小分类越准。 第二个衡量指标:宏观上一般训练结果主要观察精度和召回率波动情况,波动不是很大则训练效果较好;如果训练比较好的话图上呈现的是稳步上升。 10.小感悟 Q1:在学习...
这些图像为我们提供了丰富的信息,包括模型对于训练数据的拟合程度、验证过程中的泛化能力,以及模型预测的准确性和召回率。首先,我们观察到训练和验证过程中的边界框损失(box_loss)、分类损失(cls_loss)、和目标损失(obj_loss)都随着迭代次数的增加而显著下降。这表明模型在学习过程中逐渐提高了对无人机目标的定位和分...
首先,观察训练过程中的盒子损失(train/box_loss),分类损失(train/cls_loss)和目标损失(train/obj_loss),可以看到随着迭代次数的增加,这三者呈现出明显的下降趋势。这表明模型在学习过程中正在改进其预测能力,并在识别和定位目标上变得更加精确。 进一步地,我们注意到验证集上的损失值(val/box_loss, val/cls_loss,...
八、result.png —— 结果loss functions 🌳定位损失box_loss: 预测框与标定框之间的误差(CIoU),越小定位得越准; 🌳置信度损失obj_loss: 计算网络的置信度,越小判定为目标的能力越准; 🌳分类损失cls_loss: 计算锚框与对应的标定分类是否正确,越小分类得越准; ...
首先,观察训练过程中的盒子损失(train/box_loss),分类损失(train/cls_loss)和目标损失(train/obj_loss),可以看到随着迭代次数的增加,这三者呈现出明显的下降趋势。这表明模型在学习过程中正在改进其预测能力,并在识别和定位目标上变得更加精确。 进一步地,我们注意到验证集上的损失值(val/box_loss, val/cls_loss...
obj(Objectness):推测为目标检测loss均值,越小目标检测越准。 cls(Classification):推测为分类loss均值,越小分类越准。 第二个衡量指标:宏观上一般训练结果主要观察精度和召回率波动情况,波动不是很大则训练效果较好;如果训练比较好的话图上呈现的是稳步上升。
首先,从图表中我们可以观察到,随着训练次数(epochs)的增加,所有类型的损失函数——包括边界框损失(box_loss)、分类损失(cls_loss)以及目标损失(obj_loss)——均呈现出下降趋势,这表明模型在逐渐学习到如何准确预测害虫的位置、大小和分类。特别是,验证集上的损失函数也显示出相似的下降趋势,这表示模型具有良好的泛化...
Obj_loss(df1_loss)是目标损失,它衡量的是模型在预测图像中是否存在目标的能力。我们看到这一损失随着训练的进行而大幅下降,并在训练后期趋于平稳,这表明模型对手势的检测越来越可靠。 Precision 显示了模型预测为正类的样本中实际为正类的比例,即模型的精确性。图中precision的稳步上升表明随着训练的进行,模型在预测...
损失函数由 4 个部分组成,均使用均方差损失。共有 S2个区域(7x7=49),B表示每个网格有2个边框,obj表示对应真实物体,noobj表示没有对应真实物体。 (1)位置误差:提取每个网格的两个边框中,IoU最大的一个边框,并计算该边框的预测值与真实值的位置误差。前一个计算正样中心点坐标的损失,后一个计算正样本宽和高的...