Yolov5的三个损失项: 分类损失(cls_loss):判断模型是否能够准确地识别出图像中的对象,并将其分类到正确的类别中。 边界框损失(box_loss):用于衡量模型预测的边界框与真实边界框之间的差异。 置信度损失(obj_loss):模型预测边界框覆盖对象的程度。 我们为什么需要 objectness loss? 对于每个边界框的预测,都会有一...