也就是说,之前R-CNN的处理流程是先提proposal,然后CNN提取特征,之后用SVM分类器,最后再做box regression,而在Fast R-CNN中,作者巧妙的把box regression放进了神经网络内部,与region分类和并成为了一个multi-task模型,实际实验也证明,这两个任务能够共享卷积特征,并相互促进。 所以,Fast-RCNN很重要的一个贡献是成...
感觉yolo的这个置信度之后再预测类别的操作有点类似于Faster RCNN,Faster RCNN的RPN是先找出有可能是目标的proposals,并没有预测类别,到了后面的Fast RCNN才预测类别。 2、yolo鲁棒性强 与DPM和RCNN相比,将测试数据集换掉,yolo的检测效果也很好。原文如下: Third,YOLO learns generalizable representations of object...
Faster R-CNN和SSD Faster R-CNN的RPN和SSD在处理边界框的中心点时采用的是相同的思路,并且它们都有Anchor,其实是SSD借鉴了RPN,最后一层特征图上的点决定了预设的中心点,RPN和SSD要预测的是Ground Truth对中心点的offset,并除Anchor的宽高后的结果,假设预设框为{dcx,dcy,dw,dh}\left {d^{cx},d^{cy},d...
SSD结合了YOLO中的回归思想和Faster-RCNN中的Anchor机制,使用全图各个位置的多尺度区域进行回归,既保持了YOLO速度快的特性,也保证了窗口预测的跟Faster-RCNN一样比较精准。 SSD的核心是在不同尺度的特征特征图上采用卷积核来预测一系列Default Bounding Boxes的类别、坐标偏移。 2.2 SSD结构 以VGG-16为基础,使用VGG...
SSD只需一个完整的框架来训练和测试。在NVIDIA Titan X对于一个大小是300×300的输入图像,SSD在VOC2007测试上的MAP是74.3%,速度是59FPS。对于512×512的输入,SSD的MAP是76.9%,比Faster RCNN更准。和其他单阶段的方法比,即便是输入较小的图像,SSD的准确性也会更高。
2、YOLO统一为一个回归问题,而Faster R-CNN将检测结果分为两部分求解:物体类别(分类问题)、物体位置即bounding box(回归问题)。 (Chat-gpt)YOLO(You Only Look Once)和Faster R-CNN(Region-based Convolutional Neural Network)都是流行的目标检测算法,但它们在目标检测方法、性能和应用方面有一些重要的区别。下面...
r_weight = self.routing_act(topk_attn_logit) # (n, p^2, k) return r_weight, to...
Fast R-CNN通过共享卷积层的方式减少了计算量,从而提高了检测速度。而Faster R-CNN则进一步引入了RPN(Region Proposal Network)网络,用于生成候选区域,从而进一步提高了检测速度。 三、YOLO和SSD算法 与R-CNN系列算法不同,YOLO和SSD算法采用了不同的思路进行目标检测。它们将目标检测视为一个回归问题,直接预测目标...
三大目标检测方法中,虽然Faster R-CNN已经出来两年了,但它对小目标的检测效果还是最好,SSD检测的速度是最快的,尤其是SSD mobilenet,YOLO v3吸取了前两者的一些优点,比Faster R-CNN快、比SSD检测小目标准,效果中规中矩。 参考: https://blog.csdn.net/weixin_42273095/article/details/81699352 ...
YOLO对于目标物体的定位并不精确,所以为了解决精确问题,SSD利用类似Faster R-CNN推荐区域得分机制实现精确定位,与Faster R-CNN的推荐候选框得分机制不同,SSD在多个特征图上进行处理,SSD利用得分机制直接进行分类和区域框回归,在保证速度的同时,SSD检验结果的精度与Faster R-CNN相差不多,从而能够满足实时检测与高精度的...