也就是说,之前R-CNN的处理流程是先提proposal,然后CNN提取特征,之后用SVM分类器,最后再做box regression,而在Fast R-CNN中,作者巧妙的把box regression放进了神经网络内部,与region分类和并成为了一个multi-task模型,实际实验也证明,这两个任务能够共享卷积特征,并相互促进。 所以,Fast-RCNN很重要的一个贡献是成...
Faster R-CNN和SSD Faster R-CNN的RPN和SSD在处理边界框的中心点时采用的是相同的思路,并且它们都有Anchor,其实是SSD借鉴了RPN,最后一层特征图上的点决定了预设的中心点,RPN和SSD要预测的是Ground Truth对中心点的offset,并除Anchor的宽高后的结果,假设预设框为{dcx,dcy,dw,dh}\left {d^{cx},d^{cy},d...
感觉yolo的这个置信度之后再预测类别的操作有点类似于Faster RCNN,Faster RCNN的RPN是先找出有可能是目标的proposals,并没有预测类别,到了后面的Fast RCNN才预测类别。 2、yolo鲁棒性强 与DPM和RCNN相比,将测试数据集换掉,yolo的检测效果也很好。原文如下: Third,YOLO learns generalizable representations of object...
SSD结合了YOLO中的回归思想和Faster-RCNN中的Anchor机制,使用全图各个位置的多尺度区域进行回归,既保持了YOLO速度快的特性,也保证了窗口预测的跟Faster-RCNN一样比较精准。 SSD的核心是在不同尺度的特征特征图上采用卷积核来预测一系列Default Bounding Boxes的类别、坐标偏移。 2.2 SSD结构 以VGG-16为基础,使用VGG...
SSD只需一个完整的框架来训练和测试。在NVIDIA Titan X对于一个大小是300×300的输入图像,SSD在VOC2007测试上的MAP是74.3%,速度是59FPS。对于512×512的输入,SSD的MAP是76.9%,比Faster RCNN更准。和其他单阶段的方法比,即便是输入较小的图像,SSD的准确性也会更高。
Faster R-CNN(RPN + CNN + ROI) R-FCN 等系列方法; RPN全称是Region Proposal Network,Region Proposal的中文意思是“区域选取”,也就是“提取候选框”的意思,所以RPN就是用来提取候选框的网络 Regions of interest(ROI) 3. 基于深度学习的回归方法:YOLO/SSD/DenseBox 等方法;以及最近出现的结合RNN算法的RRC ...
三大目标检测方法中,虽然Faster R-CNN已经出来两年了,但它对小目标的检测效果还是最好,SSD检测的速度是最快的,尤其是SSD mobilenet,YOLO v3吸取了前两者的一些优点,比Faster R-CNN快、比SSD检测小目标准,效果中规中矩。 参考: https://blog.csdn.net/weixin_42273095/article/details/81699352 ...
也可以改进其他的YOLO网络以及目标检测网络,比如YOLOv7、v6、v4、v3,Faster rcnn ,ssd等。
这样就完成了faster R-CNN的整个过程了。算法还是相当复杂的,对于每个细节需要反复理解。faster R-CNN使用resNet101模型作为卷积层,在voc2012数据集上可以达到83.8%的准确率,超过yolo ssd和yoloV2。其最大的问题是速度偏慢,每秒只能处理5帧,达不到实时性要求。
Faster-RCNN遵循如下训练过程: 第一步:使用ImageNe上预训练的模型初始化特征提取网络并训练RPN网络; 第二步:使用在ImageNet上预训练的模型初始化Fast-RCNN特征特征提取网络,使用步骤一中训练好的RPN网络产生的候选框作为输入,训练一个Fast-RCNN网络,至此,两个网络每一层的参数完全不共享; 第三步:使用步骤二的Fast...