Faster R-CNN在精度上表现较好,能够有效处理小物体和复杂背景。然而,由于采用两阶段的处理方式,它的速度较慢,适合精度要求较高但不特别看重实时性的场景。 差异分析 整体来看,YOLO11在速度、实时性和小目标检测方面表现突出,适合低复杂度的实时场景;SSD在多目标检测任务中具有优势,而Faster R-CNN则以高精度和复杂模...
Faster R-CNN是一种最先进的物体检测模型。它有两个主要组件:一个深度全卷积区域提议网络和一个Fast R-CNN物体检测器。它使用区域提议网络(RPN),该网络与检测网络共享全图像卷积特征(Ren等,2015)。RPN是一个全卷积神经网络,生成高质量的提议。然后,Fast R-CNN使用这些提议进行物体检测。这两个模型被组合成一个...
(2) R-CNN训练过程分为了三个阶段,而Fast R-CNN直接使用softmax替代SVM分类,同时利用多任务损失函数边框回归也加入到了网络中,这样整个的训练过程是端到端的(除去region proposal提取阶段)。 也就是说,之前R-CNN的处理流程是先提proposal,然后CNN提取特征,之后用SVM分类器,最后再做box regression,而在Fast R-CN...
2.4.1 PriorBox层-default boxes default boxex类似于RPN当中的滑动窗口生成的候选框,SSD中也是对特征图中的每一个像素生成若干个框。 特点分析: priorbox:相当于faster rcnn里的anchors,预设一些bbox,网络根据bbox,通过分类和回归给出被检测到物体的类别和位置。每个window都会被分类,并回归到一个更准的位置和尺...
Faster R-CNN,SSD,YOLOv2和YOLOv3 Faster R-CNN,SSD,YOLOv2和YOLOv3都带Anchor,所以它们对于(w,h)(w,h)(w,h)的处理是一致的,就是根据Anchor,用对数函数,对预测值和ground truth去重新编码。 下面是SSD中用Anchor编码的ground truth例子:假设预设框为{dcx,dcy,dw,dh}\left {d^{cx},d^{cy},d^{w}...
Faster R-CNN(RPN + CNN + ROI) R-FCN 等系列方法; 3. 基于深度学习的回归方法:YOLO/SSD/DenseBox 等方法;以及最近出现的结合RNN算法的RRC detection;结合DPM的Deformable CNN等 传统目标检测流程: 1)区域选择(穷举策略:采用滑动窗口,且设置不同的大小,不同的长宽比对图像进行遍历,时间复杂度高) ...
一类是基于Region Proposal的R-CNN系算法(R-CNN,Fast R-CNN, Faster R-CNN等),它们是two-stage的,需要先通过算法产生目标候选框,也就是目标位置,然后再对候选框做分类与回归。 而另一类是Yolo,SSD这类one-stage算法,其仅仅使用一个卷积神经网络CNN直接预测不同目标的类别与位置。
Faster RCNN/SSD/YOLO的对比分析 1. Anchor/PriorBox Faster RCNN:首先在第一个阶段对固定的Anchor进行了位置修正与筛选, 得到感兴趣区域后, 在第二个阶段再对该区域进行分类与回归; SSD:直接将固定大小宽高的PriorBox作为先验的感兴趣区域, 利用一个阶段完成了分类与回归;PriorBox本质上是在原图上的一系列矩形...
SSD只需一个完整的框架来训练和测试。在NVIDIA Titan X对于一个大小是300×300的输入图像,SSD在VOC2007测试上的MAP是74.3%,速度是59FPS。对于512×512的输入,SSD的MAP是76.9%,比Faster RCNN更准。和其他单阶段的方法比,即便是输入较小的图像,SSD的准确性也会更高。
对于一副任意大小的P*Q的图像,传入FasterRCNN之前首先要Reshape 到固定的M * N大小,im_info=[M,N,scale_factor]保存的就是此次缩放的所有信息,所以虽然输入到Faster RCNN的图片都是reshape过的,但是还是保留有且使用原图的信息,只不过输出给ROIPooling层的proposal 是对应于reshape后的图片的。