一、confusion_matrix.png —— 混淆矩阵 二、F1_curve.png —— F1曲线 三、labels.jpg —— 标签 四、labels_correlogram.jpg —— 体现中心点横纵坐标以及框的高宽间的关系 五、P_curve.png —— 单一类准确率 六、R_curve.png —— 单一类召回率 七、PR_curve.png —— 精确率和召回率的关系图 ...
这时候就看F1这个综合指标了 # 返回所有类别, 横坐标为conf(值为px=[0, 1, 1000] 0~1 1000个点)对应的f1值 f1=[nc, 1000] f1 = 2 * p * r / (p + r + 1e-16) # 用于绘制P-Confidence(F1_curve.png) if plot: plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', ...
F1_curve.png: F1值是precision与recall的调和均值,即 PR_curve.png: 2.vals: 保存了验证结果,路径下各文件为:confusion_matrix PR_curves val_batch_labels and val_batch_pred: 验证batch真实标注和预测结果3.detects: 保存了测试结果,为测试集中每一个输入的标注图像文件和标注框信息txt文件(class,x,y,w,...
在PR Curve中,横坐标为召回率,纵坐标为精确率。一般而言,当召回率较高时,精确率较低;当精确率较高时,召回率较低。而PR Curve则体现了这种“取舍”关系。当PR Curve越靠近右上角时,表示模型在预测时能够同时保证高的精确率和高的召回率,即预测结果较为准确。相反,当PR Curve越靠近左下角时,表示模型在预测时...
F1_curve.png 是 YOLOv7 模型在训练过程中生成的一张图像,用于可视化模型的 F1-score 值随着训练轮次的变化情况。 F1-score 是一种综合考虑了分类模型的准确率和召回率的指标,用于评估模型的分类性能。在目标检测任务中,F1-score 可以用于评估模型在检测出所有目标的情况下的精确性和完整性。
F1_curve是F1-score与置信度之间的关系:F1-score是分类问题的一个衡量指标,可以用于评估模型在检测出所有目标的情况下的精确性和完整性,是精确率precision和召回率recall的调和平均数,介于0,1之间,1是最好,0是最差。 在YOLOv5 的训练过程中,每个训练轮次结束后,会计算出模型在验证集上的 F1-score 值,并将这些...
F1_curve.png(F1曲线) 表示是置信度confidence与F1之间的关系曲线。一般来说,置信度阈值(该样本被判定为某一类的概率阈值)较低的时候,很多置信度低的样本被认为是真,召回率高,精确率低;置信度阈值较高的时候,置信度高的样本才能被认为是真,类别检测的越准确,即精准率较大(只有confidence很大,才被判断是某一类别...
F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。 TP:真实为真,预测为真; FN:真实为真,预测为假; FP:真实为假,预测为真; TN:真实为假,预测为假; 精确率(precision)=TP/(TP+FP) 召回率(Recall)=TP/(TP+FN) F1...
求助!yolov5训练不输出F1_curve等怎么办 输出了这些 但是没有F1_curve,confusion_matrix,P_curve,PR_curve等,同时权重也只输出last.pt不输出best.pt
F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。 TP:真实为真,预测为真; FN:真实为真,预测为假; FP:真实为假,预测为真; TN:真实为假,预测为假; 精确率(precision)=TP/(TP+FP) ...