F1_Curve F1_Curve这个文件,我们点击去的图片的标题是F1-Confidence Curve它显示了在不同分类阈值下的F1值变化情况。 我们可以这么理解,先看它的横纵坐标,横坐标是置信度,纵坐标是F1-Score,F1-Score在前面我们以及讲解过了,那什么是置信度? 置信度(Confidence)->在我们模型的识别过程中会有一个概率,就是模型判...
根据F1-Confidence Curve图,我们可以分析模型对各类目标的检测性能。曲线图中展示了多个类别的F1分数与置信度阈值之间的关系。在理想情况下,F1曲线会接近顶部左侧,表示即使在较低置信度阈值下也能保持较高的F1分数。我们可以观察到,不同类别的F1分数在置信度阈值变化时展现出不同的趋势,这些趋势揭示了模型在识别各类目...
综合考虑,F1-Confidence曲线为我们提供了一个直观的工具,以评估和调整模型的置信度阈值。通过分析这些曲线,我们可以更精确地理解模型在各个置信度水平上的性能,并据此进行调整以获得最佳的识别效果。此外,这些曲线还揭示了模型对于不同类别的识别能力,为未来的模型改进提供了宝贵的信息。 4.3 YOLOv5、YOLOv6、YOLOv7和...
F1分数也是一个关键指标,它综合考虑了模型的精确度和召回率,为我们提供了一个衡量模型性能的单一指标。从提供的F1-Confidence曲线图中,我们可以看到不同情绪类别的F1分数随置信度阈值的变化情况。整体上,曲线图揭示了模型对于不同情绪识别任务的性能,其中’Happy’和’Fear’的F1分数较高,显示出模型对这些表情的识别...
R_curve.png(信度阈值 - 召回率曲线图) Recall-Confidence Curve (RCC)图是目标检测中用于评估算法性能的一种方法。它是在不同置信度阈值下,召回率的变化情况的可视化表示。 通常情况下,我们希望算法能够在高召回率的同时保持较高的精度。 当RCC图中的曲线在较高的置信度水平下具有较高的召回率时,说明算法在检...
F1_curve.png(F1曲线) 表示是置信度confidence与F1之间的关系曲线。一般来说,置信度阈值(该样本被判定为某一类的概率阈值)较低的时候,很多置信度低的样本被认为是真,召回率高,精确率低;置信度阈值较高的时候,置信度高的样本才能被认为是真,类别检测的越准确,即精准率较大(只有confidence很大,才被判断是某一类别...
我们通过F1-Confidence Curve图来评估了不同置信度阈值下的F1分数,从而全面理解模型性能。从图中,类别‘person’的F1分数在大部分置信度阈值区间内都高于‘hat’,这可能意味着模型在检测人物时比检测安全帽时更加准确和可靠。这种情况在实际应用中很常见,因为人物作为一个相对容易区分的目标,模型通常能够更好地学习其...
一般来说,置信度阈值(该样本被判定为某一类的概率阈值)较低的时候,很多置信度低的样本被认为是真,召回率高,精确率低;置信度阈值较高的时候,置信度高的样本才能被认为是真,类别检测的越准确,即精准率较大(只有confidence很大,才被判断是某一类别),所以前后两头的F1分数比较少。
7.PR_curve(精确率和召回率的关系图) mAP (Mean Average Precision),即均值平均精度。 mAP是所有类别AP的均值,AP由精确率和召回率确定;而IoU 阈值、confidence(置信度) 阈值影响精确率和召回率的计算。计算精确率和召回率时需要判断TP、FP、TN、FN
从提供的F1-Confidence曲线图中,我们可以看到不同情绪类别的F1分数随置信度阈值的变化情况。整体上,曲线图揭示了模型对于不同情绪识别任务的性能,其中'Happy'和'Fear'的F1分数较高,显示出模型对这些表情的识别相对较好。相反,'Anger'和'Disgust'的F1分数较低,指出模型在这些类别上的识别性能有待提高。 以F1-curve...