两端求导得 2x+y+xy'=0 令x=2, 得4+y+2y'=0 而当x=2时由x平方+xy=10得y=3 所以4+3+2y'=0 y'=-7/2 xy的导数-y-根号y平方减x平方 即(xy'-y)/x^2=√(y/x)^2-1 那么(y/x)'=√(y/x)^2-1 令y/x=u 得到u'=√(u^2-1) du/√(u^2-1)=dx 积分得到 ln|1+√(u^2-...
X^2 + Y^2 = 1 Y =根号下(1-X^2)= (1-X^2)^(1/2)Y' =[1/2根号下(1-X^2)]*(1-X^2)’=[1/2根号下(1-X^2)]*(-2X)=-X/根号下(1-X^2)提示:把 1-X^2 当作一个整体 设U=1-X^2 则 Y=根号下U Y’=(根号下U)’* U’如果还有不明白的可以...
关于xy平方的导数是多少如下:x平方乘以y平方的导函数是Xy。
要分清对谁求导,对X求导时,y要看做常数;反之,对y一样。f对x的偏导为g=4-2x,继续求g对y的偏导,很明显为0
因为y是由x表示的函数,由于没有具体的表达式,所以求导的时候用y'表示已经对y求导了 (xy^2)'=y^2+x(y^2)'=y^2+2xy(y)'=y^2+2xyy'
这样的项求导时,就记住y 是x的函数,求导的时候y 对x求导得到的是y' 即可,其余的与函数的求导法则是一样的,即x^a * [f(x)]^b 对x求导得到 a*x^(a-1) * [f(x)]^b +x^a *b *[f(x)]^(b-1) *f '(x)
这里y是x的函数吧?x^2y对x求导,为:2xy+x^2y'xy^2对x求导,为:y^2+2xyy'
1、x+z=y*f(x^2-z^2)对x求偏导得到1+Z'x=y*f'(x^2-z^2)*(2x-2z*Z'x)化简解得Z'x=[2xy*f'(x^2-z^2)-1]/[2yz*f'(x^2-z^2)+1]同理对y求偏导得到Z'y=f(x^2-z^2)+y*f'(x^2-z^2)*(-2z*Z'y)化简得到Z'y=f(x^2-z^2)/[2yz ...
4 求解函数y^2-xy+2=0的一阶导数,计算出函数的驻点,并进一步解析函数y^2-xy+2=0的单调区间。5 二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍然是x的函数,则y'=f'(x)的导数叫作函数y=f(x)的二阶导数。
这个是对x求导,且y是关于x的函数。在这样的前提下,xy的导数为y+x*y'过程如下:(xy)'=x'y+xy'=y+xy'。可以利用导数,把一个函数近似的转化成另一个多项式函数,即把函数转化成a0+a1(x-a)+a2(x-a)^2+……+an(x-a)^n,这种多项式叫作“泰勒多项式”,可以用于近似计算、误差估计,...