1.x y的方差公式是什么? 答:D(XY) = D(X)D(Y)。 解题过程如下: D(XY) = E{[XY-E(XY)]^2} = E{X²Y²-2XYE(XY)+E²(XY)} = E(X²)E(Y²)-2E²(X)E²(Y)+E²(X)E²(Y) = E(X²)E(Y²)-E²(X)E²(Y) 如果E(X) = E(Y) = 0, 那么D(...
方差的计算公式:D(X)=(E[X-EX])^2=E(X^2)-(EX)^2 由题目为二项分布,所以EX=p,同时EX^2=p。D(X)=E(X^2)-(EX)^2=p-p^2=p*(1-p)=p*q。所以说DX的值为p*q。
第一,X拔的方差是σ^2/n。第二,X与X拔不独立,方差不能拆开。第三,即使能拆开,D(X-Y)=D(X)+D(Y)不是相减。
线性组合的方差计算公式为:Var(Z) = a^2 * Var(X) + b^2 * Var(Y) + 2ab * Cov(X, Y)其中,Var(Z) 表示线性组合 Z 的方差;a 和 b 是常数,表示线性组合中每个随机变量的系数;Var(X) 和 Var(Y) 分别表示随机变量 X 和 Y 的方差;Cov(X, Y) 表示随机变量 X 和 Y 的...
若两个随机变量X和Y相互独立,那么两个随机变量的和的方差等于各自方差的和: D(X+Y) = D(X)+D(Y) (1)这是因为:D(X+Y) = E{(X+Y)-[E(X)+E(Y)]}^2 = E{[X-E(X)]+[Y-E(Y)]}^2 = E[X-E(X)]^2 + 2E{[X-E(X)][Y-E(Y)]} + E[Y-E(Y)]^2 = D(X) + D(Y...
D(X-Y)指(X-Y)的方差。计算公式为D(X-Y)=D(X)+D(Y)-2Cov(X,Y)。其中Cov(X,Y) 为X,Y的协方差。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。方差公式性质 1、设C为常数,则D(C) = 0(...
D(X)=E(X^2)-[E(X)]^2 S^2=[(x1-x拔)2+(x2-x拔)^2+(x3-x拔)^2+…+(xn-x拔)^2]/n 方差的几个重要性质(设一下各个方差均存在)。(1)设c是常数,则D(c)=0。(2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。(3)设X,Y是两个相互独立的随机变量,则...
=+a²D(X)+b²D(Y)X 服从正态分布,即X~N(μ,σ^2),则E(x)=μ,D(X)=σ^2 D(x)=0.6,D(y)=2 D(3X-Y)=9D(x)+D(Y)=9 ×0.6+2=7.4。0≤P(A)≤1 0≤P(B)≤1 0≤P(AB)≤1 设X、Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。