根号下1加x平方,数学上表示为$sqrt{1+x^2}$,是一个典型的无理函数。这个函数在实数范围内总是大于或等于1,且随着x的增大或减小,函数值也无限增大。在积分学中,求解此类函数的积分往往需要通过一些特殊的技巧和方法,如换元法、分部积分法等。本题要求求解的是该函数的不定...
如图
根号(1x平方)的积分怎么解 令x=tanα则:√(1+x^2)=√[1+(tanα)^2]=1/cosαdx=[1/(cosα)^2]dα. sinα=√{(sinα)^2/[(sinα)^2+(cosα)^2]}=√{(tanα)^2/[1+(tanα)^2} =x/√(1+x^2) ∴原式=∫{(1/cosα)[1/(cosα)^2]}dα =∫[cosα/(cosα)^4]dα...
根号(1 x平方)的积分怎么解令x=tanα 则:√(1+x^2)=√[1+(tanα)^2]=1/cosα dx=[1/(cosα)^2]dα. sinα=√{(sinα)^2/[(sinα)^2+(cosα)^2]}=√{(tanα)^2/[1+(tanα)^2} =x/√(1+x^2) ∴原式=∫{(1/cosα)[1/(cosα)^2]}dα =∫[cosα/(cosα)^4]d...
∫ X*根号(1+X^2)dX =∫ (1 / 2)*根号(1+X^2)d(X^2)= (1 / 2) ∫ 根号(1+X^2)d(X^2)= (1 / 2)*∫ 根号(1+X^2)d(1+X^2)= (1 / 2)*(2 / 3)*(1+X^2)^(3 / 2)+C =[ (1+X^2)^(3 / 2) ] / 3+C ...
∫x√(1+x^2)dx=1/3*(1+x^2)^(3/2)+C。(C为积分常数)∫x√(1+x^2)dx =1/2*∫(1+x^2)^(1/2)d(1+x^2)=1/2*(2/3)(1+x^2)^(3/2)+C =1/3*(1+x^2)^(3/2)+C(C为积分常数)。
方法如下,请作参考:
根号下1-x^2的积分为1/2*arcsinx+1/2*x*√(1-x^2)+C。解:∫√(1-x^2)dx 令x=sint,那么∫√(1-x^2)dx =∫√(1-(sint)^2)dsint =∫cost*costdt =1/2*∫(1+cos2t)dt =1/2*∫1dt+1/2*∫cos2tdt =t/2+1/4*sin2t+C 积分基本公式 1、∫0dx=c 2、∫x^udx...
根号下1-x^2的积分为1/2*arcsinx+1/2*x*√(1-x^2)+C。解:∫√(1-x^2)dx 令x=sint,那么 ∫√(1-x^2)dx=∫√(1-(sint)^2)dsint =∫cost*costdt =1/2*∫(1+cos2t)dt =1/2*∫1dt+1/2*∫cos2tdt =t/2+1/4*sin2t+C 又sint=x,那么t=arcsinx,sin2t=2sint...
令x=tant,x'=(sect)^2 √(1 x^2)=√(1 tant^2)=√(sect)^2=sect 原积分=sect*(sect)^2dt=(sect)^3dt=(1/2)*sin(t)/cos(t)^2 (1/2)*ln(sec(t)tan(t))x=tant,画个直角三角形,可得出sint,cost,sect的用x表示的值,代入 最终结果为(1/2)*x*sqrt(1 x^2)(1/2)*...