因为x→0时,两者都是无穷小,两者比值的极限是1。由等价无穷小的定义,所以两者是等价无穷小。
因为当x→0时,lim(x→0)(ln(x+1)/x)=lim(x→0)(1/(1+x)/1)=1(洛必达法则)。所以lim(x→0)(ln(1+x))=lim(x→0)(x)。所以是等价无穷小
1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向过...
x—ln(1+x)的等价X。因为:ln1+X的等价是X,那么题目要求:X一ln1+X的等价于什么,因分折由于ln1十x的等价于x。理由是ln1对数值=O,那么x一0+×=x+x,再分折如x一ln1+X,(lh1+Ⅹ)=O+X,则x一O十X=X+X。所以说原题x一|n1十X等价于X。lnx等价无穷小公式大全:lnx...
x趋于0,ln(1+x)与x是等价无穷小 这是因为:令 g(x) = ln(1+x),g(0) = 0;[ln(1+x)] ' = 1 / (1+x),g'(0) = 1;[ln(1+x)] '' = -1 / (1+x)^2,g''(0) = -1;[ln(1+x)] ''' = 2 /...
被代换的量,作为被乘或者被除的元素时,可以用等价无穷小代换,但是作为加减的元素时就不可以 正文 1 ln(1+x)等价无穷小替换是x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。等价无穷小的使用条件:被...
首先x趋于0时(1+x)∧1/x=e然后两边取对数得到ln(1+x)/x=1我们之所以能知道指数和对数的无穷小关系,…
limln(1+x)/x (x趋于0)=lim1/1+x (运用洛必达法则)=1。所以 ln(1+x)和x是等价无穷小。等价无穷小是现代词,是一个专有名词,指的是数学术语,是大学高等数学微积分使用最多的等价替换。无穷小就是以数零为极限的变量。确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别...
ln(1+x)等价无穷小替换是-(x^2)/2。把ln(1+x)用麦克劳林公式展开:ln(1+x)=x-(x^2)/2+(x^3)/3-……所以ln(1+x)-x=-(x^2)/2+(x^3)/3-……所以它的等价无穷小=-(x^2)/2。换底公式 设b=a^m,a=c^n,则b=(c^n)^m=c^(mn) ① 对①取以a为底的对数,有:...
等价是无穷小的等价,ln(1+1/x)中,1/x当x趋向于0的时候,1/x是趋于∞,不是无穷小,所以ln(1+1/x)不能等价为1/x。望采纳,谢谢。