Spark2 Can't write dataframe to parquet hive table : HiveFileFormat`. It doesn't match the specified format `ParquetFileFormat`. 一、概述 出现该问题的原因是因为 如果用命令行创建的hive表,会根据hive的hive.default.fileformat,这个配置来规定hive文件的格式,其中fileformat一般有4中,分别是TextFile、Se...
Read our articles about write dataframe to parquet for more information about using it in real time with examples
I'm trying to write a dataframe to a parquet hive table and keep getting an error saying that the table is HiveFileFormat and not ParquetFileFormat. The table is definitely a parquet table. Here's how I'm creating the sparkSession: val spark = SparkSession .builder() .config("spark...
I'm trying to save dataframe in table hive. In spark 1.6 it's work but after migration to 2.2.0 it doesn't work anymore. Here's the code: blocs.toDF().repartition($"col1", $"col2", $"col3", $"col4").write.format("parquet").mode(saveMode).partitionBy("col1","col2","c...
I'm trying to save dataframe in table hive. In spark 1.6 it's work but after migration to 2.2.0 it doesn't work anymore. Here's the code: blocs .toDF() .repartition($"col1", $"col2", $"col3", $"col4") .write .format("parquet") .mode(saveMode) .partitionBy("col1", ...
I am writing spark dataframe into parquet hive table like below df.write.format("parquet").mode("append").insertInto("my_table") But when i go to HDFS and check for the files which are created for hive table i could see that files are not created with .par...
Lakehouses support structured, semi-structured, and unstructured files. Load as a parquet file or Delta table to take advantage of the Spark engine. Python # Write DataFrame to Parquet file formatparquet_output_path ="dbfs:/FileStore/your_folder/your_file_name"df.write.mode("overwrite").parquet...
17/10/07 00:58:21 INFO hadoop.ParquetOutputFormat: Dictionary is on 17/10/07 00:58:21 INFO hadoop.ParquetOutputFormat: Validation is off 17/10/07 00:58:21 INFO hadoop.ParquetOutputFormat: Writer version is: PARQUET_1_0 17/10/07 00:58:21 INFO hadoop.ParquetOutputFormat: Maximum row grou...
Write.parquet() In our first scenario, we just convert/write our PySpark DataFrame to a parquet file. Let’s create a PySpark DataFrame with 5 records and write this to the “industry_parquet” parquet file. import pyspark from pyspark.sql import SparkSession,Row ...
使用pyarrow引擎,您可以将kwargs中的compression_level发送到to_parquet