serving时,计算ewx就是观看时常的预估值,完美的把一个回归任务转换成了一个分类任务 训练Weighted LR一般来说有两种办法: 将正样本按照weight做重复sampling,然后输入模型进行训练; 在训练的梯度下降过程中,通过改变梯度的weight来得到Weighted LR。 WCE其实假设了样本分布服从几何分布,如果样本分布不是几何分布,可能导致...
weighted_cross_entropy_with_logits(targets, logits, pos_weight, name=None): 此函数功能以及计算方式基本与tf_nn_sigmoid_cross_entropy_with_logits差不多,但是加上了权重的功能,是计算具有权重的sigmoid交叉熵函数 计算方法 : posweight∗targets∗−log(sigmoid(logits))+(1−targets)∗−log(1−...
weighted_cross_entropy_with_logits(targets, logits, pos_weight, name=None): 此函数功能以及计算方式基本与tf_nn_sigmoid_cross_entropy_with_logits差不多,但是加上了权重的功能,是计算具有权重的sigmoid交叉熵函数 计算方法 :posweight∗targets∗−log(sigmoid(logits))+(1−targets)∗−log(1−...
weighted_cross_entropy_with_logits(targets, logits, pos_weight, name=None): 此函数功能以及计算方式基本与tf_nn_sigmoid_cross_entropy_with_logits差不多,但是加上了权重的功能,是计算具有权重的sigmoid交叉熵函数 计算方法 : posweight∗targets∗−log(sigmoid(logits))+(1−targets)∗−log(1−...
通常的cross-entropy 成本定义为: labels * -log(sigmoid(logits)) + (1- labels) * -log(1- sigmoid(logits)) 值pos_weight > 1会减少假阴性计数,从而增加召回率。相反,设置pos_weight < 1会减少误报计数并提高精度。这可以从pos_weight被引入作为损失表达式中正标签项的乘法系数的事实中看出: ...
focal loss的设计很巧妙,就是在cross entropy的基础上加上权重,让模型注重学习难以学习的样本,训练数据不均衡中占比较少的样本,相对放大对难分类样本的梯度,相对降低对易分类样本的梯度,并在一定程度上解决类别不均衡问题。 如果将cross loss定义为: ...
在PyTorch中,可以使用torch.nn.functional中的weighted_cross_entropy_with_logits函数来模拟加权交叉熵损失函数。 加权交叉熵损失函数是一种常用的用于多分类问题的损失函数,它可以解决类别不平衡问题。在实际应用中,不同类别的样本数量可能存在差异,为了平衡不同类别的重要性,可以使用加权交叉熵损失函数。
一、cross entropy loss 二、weighted loss 三、focal loss 四、dice soft loss 五、soft IoU loss 总结: 一、cross entropy loss 用于图像语义分割任务的最常用损失函数是像素级别的交叉熵损失,这种损失会逐个检查每个像素,将对每个像素类别的预测结果(概率分布向量)与我们的独热编码标签向量进行比较。
简介:损失函数大全Cross Entropy Loss/Weighted Loss/Focal Loss/Dice Soft Loss/Soft IoU Loss 一、crossentropyloss 用于图像语义分割任务的最常用损失函数是像素级别的交叉熵损失,这种损失会逐个检查每个像素,将对每个像素类别的预测结果(概率分布向量)与我们的独热编码标签向量进行比较。
简介:损失函数大全Cross Entropy Loss/Weighted Loss/Focal Loss/Dice Soft Loss/Soft IoU Loss 一、crossentropyloss 用于图像语义分割任务的最常用损失函数是像素级别的交叉熵损失,这种损失会逐个检查每个像素,将对每个像素类别的预测结果(概率分布向量)与我们的独热编码标签向量进行比较。