Weighted LR (WCE Weighted cross entropy) 在推荐系统中,我们常常需要用用户的观看时长作为目标来进行建模,那么如何训练一个模型来预估模型的用户的播放时长呢? 很容易想到把播放时长的预估问题作为一个回归问题,采用mse loss,但是mse loss存在两个问题: 分布假设:假设是预估label、误差项符合正态分布 预估局限:对...
weighted_cross_entropy_with_logits(targets, logits, pos_weight, name=None): 此函数功能以及计算方式基本与tf_nn_sigmoid_cross_entropy_with_logits差不多,但是加上了权重的功能,是计算具有权重的sigmoid交叉熵函数 计算方法 : posweight∗targets∗−log(sigmoid(logits))+(1−targets)∗−log(1−...
tf.nn.weighted_cross_entropy_with_logits( labels=labels, logits=logits, pos_weight=tf.constant(1.5)).numpy() array([3.0211994e-01,8.8049585e-01,4.5776367e-05], dtype=float32) tf.nn.weighted_cross_entropy_with_logits( labels=labels, logits=logits, pos_weight=tf.constant(0.5)).numpy() arr...
Focal Loss for Dense Object Detection focal loss的设计很巧妙,就是在cross entropy的基础上加上权重,让模型注重学习难以学习的样本,训练数据不均衡中占比较少的样本,相对放大对难分类样本的梯度,相对降低对易分类样本的梯度,并在一定程度上解决类别不均衡问题。 如果将cross loss定义为: 那focal loss加权后...
weighted_cross_entropy_with_logits(targets, logits, pos_weight, name=None): 此函数功能以及计算方式基本与tf_nn_sigmoid_cross_entropy_with_logits差不多,但是加上了权重的功能,是计算具有权重的sigmoid交叉熵函数 计算方法 :posweight∗targets∗−log(sigmoid(logits))+(1−targets)∗−log(1−...
weighted_cross_entropy_with_logits(targets, logits, pos_weight, name=None): 此函数功能以及计算方式基本与tf_nn_sigmoid_cross_entropy_with_logits差不多,但是加上了权重的功能,是计算具有权重的sigmoid交叉熵函数 计算方法 : posweight∗targets∗−log(sigmoid(logits))+(1−targets)∗−log(1−...
在PyTorch中,可以使用torch.nn.functional中的weighted_cross_entropy_with_logits函数来模拟加权交叉熵损失函数。 加权交叉熵损失函数是一种常用的用于多分类问题的损失函数,它可以解决类别不平衡问题。在实际应用中,不同类别的样本数量可能存在差异,为了平衡不同类别的重要性,可以使用加权交叉熵损失函数。 weighted_cross...
一、cross entropy loss 二、weighted loss 三、focal loss 四、dice soft loss 五、soft IoU loss 总结: 一、cross entropy loss 用于图像语义分割任务的最常用损失函数是像素级别的交叉熵损失,这种损失会逐个检查每个像素,将对每个像素类别的预测结果(概率分布向量)与我们的独热编码标签向量进行比较。
简介:损失函数大全Cross Entropy Loss/Weighted Loss/Focal Loss/Dice Soft Loss/Soft IoU Loss 一、crossentropyloss 用于图像语义分割任务的最常用损失函数是像素级别的交叉熵损失,这种损失会逐个检查每个像素,将对每个像素类别的预测结果(概率分布向量)与我们的独热编码标签向量进行比较。
简介:损失函数大全Cross Entropy Loss/Weighted Loss/Focal Loss/Dice Soft Loss/Soft IoU Loss 一、crossentropyloss 用于图像语义分割任务的最常用损失函数是像素级别的交叉熵损失,这种损失会逐个检查每个像素,将对每个像素类别的预测结果(概率分布向量)与我们的独热编码标签向量进行比较。