watch(model, log="all") for epoch in range(1, config.epochs + 1): train(config, model, device, train_loader, optimizer, epoch) test(config, model, device, test_loader) #保存模型 torch.save(model.state_dict(), "model.h5") #在wandb上保存模型 wandb.save('model.h5') if __name__...
wandb.init(project="pytorch-model-visualization")# 初始化 W&B 项目 1. project: 指定你的项目名称。 5. 记录模型结构 现在,我们可以把模型结构记录到 W&B 中: model=SimpleModel()# 实例化模型wandb.watch(model,log="all")# 监控模型,记录梯度和损失等信息 1. 2. watch: 监控模型,记录训练的所有信...
在运行当中,可以在其提供的链接中动态的查看训练过程与中间结果,wandb.watch(model, log="all") 可以自动获取所有层尺寸、梯度、模型参数,并将它们自动记录到云端的仪表板中。如下所示: Chart & Media 在记录中间的测试准确率和测试损失时,还可以把测试的图像列表保存下来存放在云端,很方便。 # example_images.ap...
wandb.watch(model) for batch in dataloader: metrics = model.training_step() # log metrics inside your training loop to visualize model performance wandb.log(metrics) # optional: save model at the end model.to_onnx() wandb.save("model.onnx") ...
wandb.watch(model) for batch in dataloader: metrics = model.training_step() # log metrics inside your training loop to visualize model performance wandb.log(metrics) # optional: save model at the end model.to_onnx() wandb.save("model.onnx") ...
问什么时候应该运行wandb.watch,这样权重和偏差才能正确跟踪参数和渐变?EN也许它真的需要所有的损失和...
deftrain(model,loader,criterion,optimizer,config):# Tell wandb to watch what the model gets up to: gradients, weights, and more!wandb.watch(model,criterion,log="all",log_freq=10)# Run training and track with wandbtotal_batches=len(loader)*config.epochsexample_ct=0# number of examples seen...
using log="all" log histograms of parameter values in addition to gradients wandb.watch(model, log="all")for epoch in range(1, config.epochs + 1): train(config, model, device, train_loader, optimizer, epoch) test(config, model, device, test_loader, classes)# Save the model checkpoint....
wandb.watch(model, log="all", log_freq=1) # Fetch all layer dimensions, gradients, model parameters and log them automatically to your dashboard. # Using log="all" log histograms of parameter values in addition to gradients opt = ... trainer = Trainer( model, ..., trial, ) trainer....
wandb.watch(model, log='all') 这将自动记录所有权重、偏置和梯度的直方图。 正常训练你的模型: 在训练循环中,只需正常地训练你的模型,并在每个epoch或iteration的结束时记录所需的其他统计信息,如loss或accuracy。 同步到wandb:用wandb.log()记录你的数据。pythonCopy codewandb.log({"loss": loss_value, "...