通过计算可得BP神经网络预测平均绝对百分比误差13. 58%,LSTM神经网络平均绝对百分比误差为8.95%,VMD-LSTM的平均绝对百分比误差为5.12%,VMD-SSA-LSTM的平均绝对百分比误差为1.53%。将麻雀搜索算法引入VMD-LSTM模型,方便了神经网络超参数的寻优,VM...
VMD、SSA和 LSTM相耦合成VMD-SSA-LSTM月径流预测模型,具体预测步骤如下。 步骤1选定前n个负荷信息作为模型输入。 步骤2利用VMD 方法对原始的负荷序列进行分解,得到k个分量。 步骤3首先设置麻雀种群规模N、最大迭代次数M、参数范围(隐含层神经元数H、训练次数E和学习率z)的搜索范围,然后选用均方误差(M Msz)作为...
结合这三个技术,基于VMD-SSA-LSTM的回归预测模型的基本原理如下: 信号分解: 首先,使用VMD将原始时间序列数据分解为多个IMFs,每个IMF代表信号的一个特定频率成分。 成分分析: 然后,对每个IMF使用SSA进行进一步的分解和分析,以提取更详细的信号成分和特征。 特征提取: 从VMD和SSA处理后的信号成分中提取特征,这些特征能...
VMD是一种信号分解方法,可以将原始信号分解为多个具有不同频率和幅度的成分。VMD通过迭代优化的方式,将信号分解为一系列带宽较窄的子信号,这些子信号可以更好地反映光伏发电功率的周期性和趋势。 然后,我们引入长短时记忆网络(LSTM)。LSTM是一种循环神经网络(RNN)的变种,适用于处理具有长期依赖关系的序列数据。在光伏...
之前分享了预测的程序基于LSTM的负荷和可再生能源出力预测【核心部分复现】,该程序预测效果比较好,并且结构比较清晰,但是仍然有同学咨询混合算法的预测,本次分享基于VMD-SSA-LSTM的多维时序光伏功率预测,本程序参考文章《基于VMD-SSA-LSSVM的短期风电预测》和《基于改进鲸鱼优化算法的微网系统能量优化管理》,采用不同方法...
结合这三个技术,基于VMD-SSA-LSTM的回归预测模型的基本原理如下: 信号分解: 首先,使用VMD将原始时间序列数据分解为多个IMFs,每个IMF代表信号的一个特定频率成分。 成分分析: 然后,对每个IMF使用SSA进行进一步的分解和分析,以提取更详细的信号成分和特征。
先运行main1_VMD,进行vmd分解;再运行main2_SSA_Transformer_LSTM,三个模型对比;注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数。 数据集 参考文献 程序设计 完整程序和数据获取方式私信博主回复分解+优化+组合+对比!核心无忧!VMD-SSA-Transformer-LSTM多变量时间序列光伏功率预测(Mat...
1.GWO-VMD-SSA-LSTM灰狼优化变分模态分解联合麻雀优化长短期记忆网络多变量时间序列光伏功率预测。 2.优化参数为:学习率,隐含层单元数目,最大训练周期,运行环境为Matlab2023b及以上; 3.数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),输入多个特征,输出单个变量,考虑历史特征的影响,多变...
通过以上流程,我们可以得到一种基于麻雀算法优化SSA-VMD-LSTM的光伏发电功率预测算法。该算法可以充分利用光伏发电数据的特征,提高预测的准确性和稳定性。在实际应用中,该算法可以为能源规划和电力调度提供重要参考,帮助实现可靠、高效的光伏发电系统。 总结起来,本文介绍了一种基于麻雀算法优化SSA-VMD-LSTM的光伏发电功率...
月径流预测变分模态分解麻雀搜索算法长短期记忆神经网络为提高月径流预测精度,提出了变分模态分解(VMD)和麻雀搜索算法(SSA)与长短期记忆神经网络(LSTM)相耦合,建立了月径流预测模型(VMD-SSA-LSTM).首先利用VMD对历史径流数据进行分解,然后依据SSA对LSTM的参数进行寻优,并将分解出的月径流分量输入到LSTM神经网络,最后将...