VMD、SSA和 LSTM相耦合成VMD-SSA-LSTM月径流预测模型,具体预测步骤如下。 步骤1选定前n个负荷信息作为模型输入。 步骤2利用VMD 方法对原始的负荷序列进行分解,得到k个分量。 步骤3首先设置麻雀种群规模N、最大迭代次数M、参数范围(隐含层神经元数H、训练次数E和学习率z)的搜索范围,然后选用均方误差(M Msz)作为...
VMD是一种信号分解方法,可以将原始信号分解为多个具有不同频率和幅度的成分。VMD通过迭代优化的方式,将信号分解为一系列带宽较窄的子信号,这些子信号可以更好地反映光伏发电功率的周期性和趋势。 然后,我们引入长短时记忆网络(LSTM)。LSTM是一种循环神经网络(RNN)的变种,适用于处理具有长期依赖关系的序列数据。在光伏...
VMD、SSA和 LSTM相耦合成VMD-SSA-LSTM月径流预测模型,具体预测步骤如下。 步骤1选定前n个负荷信息作为模型输入。 步骤2利用VMD 方法对原始的负荷序列进行分解,得到k个分量。 步骤3首先设置麻雀种群规模N、最大迭代次数M、参数范围(隐含层神经元数H、训练次数E和学习率z)的搜索范围,然后选用均方误差(M Msz)作为...