AI代码解释 # Install vLLMwithCUDA11.8.exportVLLM_VERSION=0.4.0exportPYTHON_VERSION=310pip install https://github.com/vllm-project/vllm/releases/download/v${VLLM_VERSION}/vllm-${VLLM_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux1_x86_64.whl--extra-index-url https://...
或者使用 pip: pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 验证PyTorch 是否检测到 CUDA python -c "import torch; print(torch.cuda.is_available())" 如果输出是True,说明 PyTorch 已正确连接 CUDA。 7. 安装flash-attn CUDA安装成功,可以开始在激活的环境...
4、xformers安装(可免,会在vllm一起安装) 5、vllm安装(安装指定cuda和torch版本的vllm) wgethttps://github.com/vllm-project/vllm/releases/download/v0.6.1.post1/vllm-0.6.1.post1+cu118-cp311-cp311-manylinux1_x86_64.whlpipinstall 。。。 6、flash-attn安装 pipinstallflash-attn(安装指定cuda...
pip install openai==1.17.1 pip install torch==2.1.2+cu121 pip install tqdm==4.64.1 pip install transformers==4.39.3 # 下载flash-attn 请等待大约10分钟左右~ MAX_JOBS=8 pip install flash-attn --no-build-isolation pip install vllm==0.4.0.post1 1. 2. 3. 4. 5. 6. 7. 8. 9. 10...
Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {{ message }} wptoux / vllm-cu118 Public forked from vllm-project/vllm Notifications You must be signed in to change notification settings Fork 0 Star 0 ...
python==3.11.0 torch==2.3.0+cu118 torchvision==0.18.0+cu118 flash-attn==2.6.3 vllm-flash-attn==2.5.9 ch9hn commented Sep 1, 2024 • edited Hello, we had the same issue and just used the build wheels from the vllm-flash-attention fork, which worked without issues. Link: https...
# 正常安装xformers时会自动装torch2.1.2+cu118 pip install xformers==0.0.23.post1 --index-url https://download.pytorch.org/whl/cu118 # 注意升级flash_attn# 这里按照平台具体需要在git选择对应whl包即可,或直接pip install flash_attn flash_attn-2.5.6%2Bcu118torch2.1cxx11abiFALSE-cp38-cp38-linu...
CMakeExtension(name="vllm.vllm_flash_attn._vllm_fa3_C")) ext_modules.append(CMakeExtension(name="vllm.cumem_allocator")) if _build_custom_ops(): ext_modules.append(CMakeExtension(name="vllm._C")) package_data = { "vllm": [ ...
path.join("vllm/vllm_flash_attn", os.path.basename(file)) print(f"Copying {file} to {dst_file}") self.copy_file(file, dst_file) def _no_device() -> bool: return VLLM_TARGET_DEVICE == "empty" def _is_cuda() -> bool: ...
super().run() # copy vllm/vllm_flash_attn/*.py from self.build_lib to current # directory so that they can be included in the editable build import glob files = glob.glob( os.path.join(self.build_lib, "vllm", "vllm_flash_attn", "*.py")) ...