由于VL-BERT是基于BERT模型添加捕捉视觉信息的新输入,所以模型初始化参数使其与BERT相同。VL-BERT BASE和VL-BERT LARGE分别表示从原始BERT BASE和BERT LARGE模型发展而来。 3.2对下游任务进行微调 通过对输入格式、输出预测、损失函数和训练策略进行简单的修改,可以对预先训练好的VL-BERT模型进行微调,以适应各种下游的视...
来自中科大、微软亚研院的研究者们提出了一种新型的通用视觉-语言预训练模型(Visual-Linguistic BERT,简称 VL-BERT),该模型采用简单而强大的 Transformer 模型作为主干网络,并将其输入扩展为同时包含视觉与语言输入的多模态形式,适用于绝大多数视觉-语言下游任务。 为了让 VL-BERT 模型利用更为通用的特征表示,作者在...
VL-BERT是一个可预训练的通用视觉语言表征模型,它采用简单而强大的Transformer作为主干,并进行了扩展,将视觉和语言的嵌入特征作为输入。VL-BERT的输入元素要么来自输入句子的单词,要么来自输入图像的Region-of-Interest(RoI,感兴趣区域)。作者利用大规模Conceptual Captions数据集和纯文本语料库对VL-BERT进行了预训练。大...
非常相似。关键区别在于VL-BERT中包含了视觉线索,以捕获视觉和语言内容之间的依存关系。在预训练期间,输入句子中的每个单词都会被随机mask(概率为15%)。对于被屏蔽的单词,其token被替换为[MASK]。预训练模型基于未被mask的单词和视觉特征来预测被mask掉的单词。该任务驱动网络不仅对句子中的依存关系进行建模,而且使视...
任务1:具有视觉线索的蒙面语言建模这个任务与BERT中使用的蒙面语言建模(MLM)任务非常相似。关键的区别在于视觉线索在VL-BERT中嵌入,以捕捉视觉和语言内容之间的依赖关系。在预训练期间,输入句子中的每个单词都被随机屏蔽(概率为15%)。对于蒙面字,其标记将替换为一个特殊的标记[MASK]。该模型基于未掩蔽词和视觉特征对...
VL-BERT: 可预训练的通用视觉-语言表示 作者提出了一种新型可训练通用预训练表示,用于视觉-语言任务,称为视觉-语言BERT(简称VL-BERT)。VL-BERT采用简单且功能强大的Transformer模型作为基础,并对其进行扩展,以视觉和语言的嵌入特征作为输入。其中,作为输入的特征来自输入句子中的单词或者来自输入图像中的感兴趣区域regio...
VL-BERT: 可预训练的通用视觉-语言表示 作者提出了一种新型可训练通用预训练表示,用于视觉-语言任务,称为视觉-语言BERT(简称VL-BERT)。VL-BERT采用简单且功能强大的Transformer模型作为基础,并对其进行扩展,以视觉和语言的嵌入特征作为输入。其中,作为输入的特征来自输入句子中的单词或者来自输入图像中的感兴趣区域regio...
来自中科大、微软亚研院的研究者们提出了一种新型的通用视觉-语言预训练模型(Visual-Linguistic BERT,简称 VL-BERT),该模型采用简单而强大的 Transformer 模型作为主干网络,并将其输入扩展为同时包含视觉与语言输入的多模态形式,适用于绝大多数视觉-语言下游任务。
简介:来自中科大、微软亚研院的研究者们提出了一种新型的通用视觉-语言预训练模型(Visual-Linguistic BERT,简称 VL-BERT),该模型采用简单而强大的 Transformer 模型作为主干网络,并将其输入扩展为同时包含视觉与语言输入的多模态形式,适用于绝大多数视觉-语言下游任务。
VL-BERT: 可预训练的通用视觉-语言表示 作者提出了一种新型可训练通用预训练表示,用于视觉-语言任务,称为视觉-语言BERT(简称VL-BERT)。VL-BERT采用简单且功能强大的Transformer模型作为基础,并对其进行扩展,以视觉和语言的嵌入特征作为输入。其中,作为输入的特征来自输入句子中的单词或者来自输入图像中的感兴趣区域regio...