VAE---变分自编码器 1、AE模型回顾 2、关于分布 3、VAE的思路与实现 4、VAE的原理 5、本质 6、总结 1、AE模型回顾 AE(Auto-Encoder)模型,它的逻辑如下所示: 其中,x是真实数据构成的样本空间里面的一个采样值,z是Encoder编码得到的latent code(隐编码),最后经过Decoder解码出来一个接近x的值。 理论上,x的...
https://github.com/vaxin/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/variational_autoencoder.py 里面的每一步,都有配合本文章的对照解释。 5. 延伸思考 之所以关注VAE,是从文献[4]引发的,由于视觉早期的概念形成对于之后的视觉认知起了十分关键的作用,我们有理由相信,在神经网络训练时,利用这种递...
VAE虽然也称是AE(AutoEncoder)的一种,但它的做法(或者说它对网络的诠释)是别具一格的。在VAE中,它的Encoder有两个,一个用来计算均值,一个用来计算方差,这已经让人意外了:Encoder不是用来Encode的,是用来算均值和方差的,这真是大新闻了,还有均值和方差不都是统计量吗,怎么是用神经网络来算的? 事实上,我觉得...
VAE 是一种生成模型,用于学习数据的分布并生成与输入数据相似的新样本。不仅可以生成新样本,还可以学习数据的概率分布。输入数据 视为从潜在空间 中采样, 如下图从 到 的过程。 条件概率 ( | ) 对应编码过程,将输入数据转换为潜在空间中的均值(mean)和方差(variance)参数;反过来,从 到 的过程,条件概率 ( | ...
1.VAE 概述 变分自动编码器(Variational autoEncoder,VAE)是生成模型的一种。这些方法的主要目标是从对象的学习分布中生成新的采样数据。2014 年,Kingma et al.提出了这种VAE生成模型,该模型可以从隐变量空间的概率分布中学习潜在属性并构造新的元素。 VAE 包含两个部分:编码器 encoder 和解码器 decoder。如图所示,...
变分自动编码器(Variational autoEncoder,VAE)是生成模型的一种。这些方法的主要目标是从对象的学习分布中生成新的采样数据。2014 年,Kingma et al. [3]提出了这种生成模型,该模型可以从隐变量空间的概率分布中学习潜在属性并构造新的元素。 VAE 概述 VAE 包含两个部分:编码器 encoder 和解码器 decoder。如图 1 ...
本文对 Autoencoder (AE) 和variational Autoencoder (VAE) 进行了详细的介绍,它们分别是主要用于数据压缩和数据生成。VAE 解决了 AE 的非正则化潜在空间的问题,这使其能够从潜在空间中随机采样的向量生成数据。以下是 AE和VAE的关键点...
【公式推导】Variational Autoencoder(VAE)变分自动编码器【蒙特卡洛】【重参数化】hallo128 立即播放 打开App,流畅又高清100+个相关视频 更多 1587 3 14:39 App 【公式推导】从物理学角度来解释朗之万动力学公式(Langevin Dynamics)的来源(补充讲解)【基于分数的生成模型】 4155 0 22:47 App 【公式推导】...
本文对 Autoencoder (AE) 和variational Autoencoder (VAE) 进行了详细的介绍,它们分别是主要用于数据压缩和数据生成。 VAE 解决了 AE 的非正则化潜在空间的问题,这使其能够从潜在空间中随机采样的向量生成数据。以下是 AE和VAE的关键点总结 自编码器 (AE) ...
VAE的差别 和普通autoecoding比, VAE的Encoder会输出两个向量,你可以把其中一个看成mean,另一个看成variance 同时还要加入一个误差error,这个error是从一个高斯分布sample出来的 最终把这3个向量合成成code,variance要乘上一个noise,然后加在mean上 VAE为什么会有作用?