变分自编码器(Variational Auto-Encoders,VAE)是深度生成模型的一种形式(GAN也是其中一种),VAE是基于变分贝叶斯推断的生成式网络结构。传统自编码器是通过数值方式描述潜在空间的不同,而VAE以概率的方式描述潜在空间的不同,是一种无监督式学习的生成模型。 举个简单的例子说明变分自编码模型,输入一张照片,想描述其中...
除了VAE,后续还有很多类似的模型比如条件变分自编码器 (Conditional VariationalautoEncoder),生成对抗编码器(VAEGAN)等等,这个领域的不断发展也带了更更好的生成类模型,感兴趣的同学可以去搜一搜论文,或者直接运行 MATLAB 中的实例跑一跑,修改参数做一些实验,或许下一个发明 VA...
变分自动编码器(Variational autoEncoder,VAE)是生成模型的一种。这些方法的主要目标是从对象的学习分布中生成新的采样数据。2014 年,Kingma et al.提出了这种VAE生成模型,该模型可以从隐变量空间的概率分布中学习潜在属性并构造新的元素。 VAE 包含两个部分:编码器 encoder 和解码器 decoder。如图所示,编码器计算每个...
变分自编码器(Variational AutoEncoder,VAE)是深度学习中常用的无监督学习方法,可以用来做数据生成,表征学习,维度压缩等一系列应用。由于架构上的相似性,VAE常常和自编码器(AutoEncoder,AE)联系在一起,但是VAE名字中的变分二字又彰显了它的不俗之处。所以通过这篇文章,我们就来一探究竟,以图更好地理解变分自编码器...
变分自编码器(VAE,Variational Auto-Encoder)是一种生成模型,它通过学习数据的潜在表示来生成新的样本。 在学习潜空间时,需要保持生成样本与真实数据的相似性,并尽量让潜变量的分布接近标准正态分布。 VAE的基本结构: 1. 编码器(Encoder):将输入数据转换为潜在空间的分布,输出潜在变量的均值和方差。
https://github.com/vaxin/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/variational_autoencoder.py 里面的每一步,都有配合本文章的对照解释。 5. 延伸思考 之所以关注VAE,是从文献[4]引发的,由于视觉早期的概念形成对于之后的视觉认知起了十分关键的作用,我们有理由相信,在神经网络训练时,利用这种递...
本文对 Autoencoder (AE) 和variational Autoencoder (VAE) 进行了详细的介绍,它们分别是主要用于数据压缩和数据生成。VAE 解决了 AE 的非正则化潜在空间的问题,这使其能够从潜在空间中随机采样的向量生成数据。以下是 AE和VAE的关键点...
4200 1 20:10 App 变分自编码器-Variational Autoencoders-数学解释 360 -- 28:18 App 【公式推导】条件流匹配CFM:证明FM和CFM的目标关于参数的梯度一致【3.2节】【定理2】 1527 -- 20:52 App 3.1 从条件概率路径pt(x|x1)和条件向量场ut(x|x1)构造pt和ut【公式推导】 1565 1 21:40 App 【公式推导...
本文对 Autoencoder (AE) 和variational Autoencoder (VAE) 进行了详细的介绍,它们分别是主要用于数据压缩和数据生成。 VAE 解决了 AE 的非正则化潜在空间的问题,这使其能够从潜在空间中随机采样的向量生成数据。以下是 AE和VAE的关键点总结 自编码器 (AE) ...
变分自动编码器(Variational autoEncoder,VAE)是生成模型的一种。这些方法的主要目标是从对象的学习分布中生成新的采样数据。2014 年,Kingma et al. [3]提出了这种生成模型,该模型可以从隐变量空间的概率分布中学习潜在属性并构造新的元素。 VAE 概述 VAE 包含两个部分:编码器 encoder 和解码器 decoder。如图 1 ...