Python value_counts()函数1. 介绍value_counts()函数是 pandas 库中的一个非常实用的函数,它用于统计一列数据中各个不同取值的出现频次。具体来说,value_counts()函数可以返回一个包含每个唯一值和对应频次的 pandas Series 对象。在数据分析和数据清洗过程中,我们经常需要了解某个特定列中各个取值的分布情况,以...
print(counts.values) # 输出:[2 3 1] 另外,我们还可以使用.sum()方法来计算所有唯一值的出现次数的总和: print(counts.sum()) # 输出:6 通过以上示例,我们可以看到value_counts()方法在pandas库中的使用和结果解读非常简单明了。它可以帮助我们快速统计Series中各个唯一值的出现次数,并对结果进行各种操作。在...
先取出列(Series对象),然后调用函数这时候相当于 train_df['label'].value_counts() 1. DataFrame 对每一列都进行统计 train_df.apply(pd.value_counts) 1. 直接使用Pandas调用 pd.value_counts(train_df['label'],ascending=True) 1. 同样的统计还可以使用groupby,这个的过程是先按‘label’分组然后再统计...
创建DataFrame调用 value_counts 方法获取 category_counts_A获取 category_counts_B合并计数结果展示合并后的结果 结论 通过上述的示例和代码,我们学习了如何在 Python 中使用 pandas 的value_counts()方法,并将其结果进行合并。掌握这个技巧对于进行数据分析时非常有用,尤其是在处理多维数据或进行交叉分析时。 希望这篇...
Python中利用pd.value_counts()函数对数据频次进行统计。 该函数返回一个序列Series,包含每个值的数量。 使用语法为: Series.value_counts(normalize=False,# 是否显示占比sort=True,# 是否排序ascending=False,# 默认降序bins=None,# 分区dropna=True)# 是否删除空缺值 ...
Pandas是Python中用于数据分析和处理的强大库,它提供了许多有用的功能来处理和分析数据。其中,value_counts()函数是Pandas中一个非常实用的函数,用于统计DataFrame或Series中每个唯一值的出现次数。这个函数在数据探索和清理阶段非常有用,可以帮助我们快速了解数据的分布情况。一、value_counts()函数的基本用法value_counts...
python value_counts value_counts(normalize=False,sort=True,ascending=False,bins=None,dropna=True) 作用:用来统计dataframe中某列有多少个不同的取值,并且每个取值出现的次数,类似SQL中的select score,count(*) as num from table group by score,返回的是series。
下面通过几个示例来演示value_counts()函数的使用方法。 示例一: ```python import pandas as pd data = {'A': ['a', 'b', 'a', 'b', 'c']} s = pd.Series(data['A']) print(s.value_counts()) ``` 输出结果为: ``` a 2 b 2 c 1 dtype: int64 ``` 示例二: ```python import...
pandas 的 value_counts() 函数可以对Series里面的每个值进行计数并且排序,默认是降序 >>>data['字段2'].value_counts()B7C4A4Name:字段2,dtype:int64>>>data['字段1'].value_counts()455362322211Name:字段1,dtype:int64 可以看出,既可以对分类变量统计,也可以对连续数值变量统计 ...
import pandas as pd df = pd.DataFrame({'a':[1, 1, 2, 2, 2]}) value_counts = df['a'].value_counts(dropna=True, sort=True) print(value_counts) print(type(value_counts)) 输出是: 2 3 1 2 Name: a, dtype: int64 <class 'pandas.core.series.Series'> 我需要的是这样的数据框...