The vivo V5 Plus comes with a 16MP camera on its back, the sensor mated to a 26mm-equiv. f/2.0 aperture lens. On the front, however, is where the real...
Beat the competition by offering a VR experience in your iCafe with ASUS Beyond VR Ready. ASUS Expedition motherboards, plus the right mix of class-leading ASUS components, are the perfect solution for delivering the best VR experiences to your customers. ASUS Expedition motherboards passed the ...
ASUS LANGuard is hardware-level networking protection that employs signal-coupling technology and premium anti-EMI surface-mounted capacitors ensuring a more reliable connection and better throughput, plus electrostatically-guarded and surge-protected components for greater tolerance to static electricity and ...
The iPhone 7 that isn't - vivo V5 Plus looks like it has rolled off the same production line as its Cupertino inspiration. Yet, it costs half that and it isn't half bad. Vivo didn't get the memo that the two cameras should go on the back and made a dual selfie shooter. But the...
'findIndex', 'Offset plus length of array is out of range', 'Unexpected argument type(s)', 'some', 'documentMode', 'Int8Array', 'Uint8ClampedArray', 'Int16Array', 'Uint16Array', 'Int32Array', 'Uint32Array', 'Array index out of range', 'getUint8', 'getUint16', 'getInt16'...
YOLOv3、YOLOv4、YOLOv5、YOLOv5-Lite、YOLOv6-v1、YOLOv6-v2、YOLOv7、YOLOX、YOLOX-Lite、PP-YOLOE、PP-PicoDet-Plus、YOLO-Fastest v2、FastestDet、YOLOv5-SPD、TensorRT、NCNN、Tengine、OpenVINO - jizhishutong/YOLOU
At the moment we have 5.4.6 of the standard arch kernel and 5.2.10 of your rt custom version. Not a big issue for a period of time, but when talking about keeping the system up with updates – do you plan to publish updates to your custom linux-rt packages (the kernel plus docs ...
VDSL2 Annex Q Vplus/35b 3 G.FAST Module g 1D/2D Bar Code Scanning Module for goods management (symbol SE2100) B Optical Power Meter Module G VFL Module H Cable Tracing X Check line sequence W IPTV Test I Only choose one item from function item 1 to 5 ...
本专栏是讲解如何改进Yolov8的专栏。改进方法采用了最新的论文提到的方法。改进的方法包括:增加注意力机制、更换卷积、更换block、更换backbone、更换head、更换优化器等;每篇文章提供了一种到N种改进方法。 评测用的数据集是我自己标注的数据集,里面包含32种飞机。每种改进方法我都做了测评,并与官方的模型做对比。
auto *attribute = new lite::cv::face::attr::AgeGoogleNet(onnx_path); auto *attribute = new lite::cv::face::attr::GenderGoogleNet(onnx_path); auto *attribute = new lite::cv::face::attr::EmotionFerPlus(onnx_path); auto *attribute = new lite::cv::face::attr::VGG16Age(onnx_pat...