1YOLOv5-Lite 1、Backbone与Head YOLOv5-Lite的网络结构的Backbone主要使用的是含Shuffle channel的Shuffle block组成; 检测Head 依旧用的是 YOLOv5 head,但用的是其简化版的 YOLOv5 head Shuffle block示意图如下: YOLOv5 backbone:在原先U版的 YOLOv5 Backbone中,作者在特征提取的上层结构中采用了4次slice操作组...
一、YOLOV5-Lite 1、Backbone与Head YOLOv5-Lite的网络结构的Backbone主要使用的是含Shuffle channel的Shuffle block组成; 检测Head 依旧用的是 YOLOv5 head,但用的是其简化版的 YOLOv5 head Shuffle block示意图如下: YOLOv5 backbone:在原先U版的 YOLOv5 Backbone中,作者在特征提取的上层结构中采用了4次slice操作...
简介: YOLOv5-Lite 树莓派实时 | 更少的参数、更高的精度、更快的检测速度(C++部署分享)(二) 4Tengine部署YOLOv5-Lite 依照顺序调用Tengine核心API如下: 1. init_tengine 初始化Tengine,该函数在程序中只要调用一次即可。 2. create_graph 创建Tengine计算图。 3. prerun_graph 预运行,准备计算图推理所需资源...
1YOLOv5-Lite 1、Backbone与Head YOLOv5-Lite的网络结构的Backbone主要使用的是含Shuffle channel的Shuffle block组成; 检测Head 依旧用的是 YOLOv5 head,但用的是其简化版的 YOLOv5 head Shuffle block示意图如下: YOLOv5 backbone:在原先U版的 YOLOv5 Backbone中,作者在特征提取的上层结构中采用了4次slice操作组...
通过改进YOLOv5,本文中YOLOv5-Lite最终实现高精度CPU、树莓派实时监测。 1 YOLOv5-Lite 1.1 Backbone与Head YOLOv5-Lite的网络结构的Backbone主要使用的是含Shuffle channel的Shuffle block组成;检测 Head 依旧用的是 YOLOv5 head,但用的是其简化版的 YOLOv5 head。
1YOLOv5-Lite 1、Backbone与Head YOLOv5-Lite的网络结构的Backbone主要使用的是含Shuffle channel的Shuffle block组成; 检测Head 依旧用的是 YOLOv5 head,但用的是其简化版的 YOLOv5 head Shuffle block示意图如下: YOLOv5 backbone:在原先U版的 YOLOv5 Backbone中,作者在特征提取的上层结构中采用了4次slice操作组...
1YOLOv5-Lite 1、Backbone与Head YOLOv5-Lite的网络结构的Backbone主要使用的是含Shuffle channel的Shuffle block组成; 检测Head 依旧用的是 YOLOv5 head,但用的是其简化版的 YOLOv5 head Shuffle block示意图如下: YOLOv5 backbone:在原先U版的 YOLOv5 Backbone中,作者在特征提取的上层结构中采用了4次slice操作组...
1YOLOv5-Lite 1、Backbone与Head YOLOv5-Lite的网络结构的Backbone主要使用的是含Shuffle channel的Shuffle block组成; 检测Head 依旧用的是 YOLOv5 head,但用的是其简化版的 YOLOv5 head Shuffle block示意图如下: YOLOv5 backbone:在原先U版的 YOLOv5 Backbone中,作者在特征提取的上层结构中采用了4次slice操作组...
elif self.tflite: input, output = self.input_details[0], self.output_details[0] int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model if int8: scale, zero_point = input['quantization'] im = (im / scale + zero_point).astype(np.uint8) # de-scale sel...
4Tengine部署YOLOv5-Lite 依照顺序调用Tengine核心API如下: 1. init_tengine 初始化Tengine,该函数在程序中只要调用一次即可。 2. create_graph 创建Tengine计算图。 3. prerun_graph 预运行,准备计算图推理所需资源。设置大小核,核个数、核亲和性、数据精度都在这里。