作者根据平均Dice系数和平均IoU来评估实验结果。TransUNet模型表现最佳,其次是Swin-Unet、UNet++和U-Net。当基于平均Hausdorff距离评估结果时,TransUNet模型也表现最佳,其次是U-Net、Swin-Unet和UNet++。在平均准确率方面,TransUNet模型表现最佳,其次是Swin-Unet、U-Net和UNet++。基于平均精度评估结果时,TransUNet模型表现最...
4.1 实验结果 4.2 评价指标 五、后续已经做的和可以做的研究 一、论文思想与贡献 1.1 基本思想 U-Net 是一种用于生物医学图像分割的卷积神经网络架构。它通过引入一种新颖的网络结构和训练策略解决了传统方法在数据量不足时面临的挑战。U-Net 的主要思想是利用数据增强技术来高效利用有限的标注样本,并通过独特的网...
通过将skip connections数分别更改为0、1、2和3,实验了不同skip connections数量对模型分割性能的影响。从下表中可以看出,模型的性能随着skip connections数的增加而提高。因此,为了使模型更加鲁棒,本工作中设置skip connections数为3。 三、实验结果 3.1 Synapse数据集 3.2 ACDC数据集 就很多基于Transformer的文章和...
作者根据平均Dice系数和平均IoU来评估实验结果。TransUNet模型表现最佳,其次是Swin-Unet、UNet++和U-Net。当基于平均Hausdorff距离评估结果时,TransUNet模型也表现最佳,其次是U-Net、Swin-Unet和UNet++。在平均准确率方面,TransUNet模型表现最佳,其次是Swin-Unet、U-Net和UNet++。基于平均精度评估结果时,TransUNet模型表现最...
基于这一发现,我们提出了用于有效扩散采样的编码器传播,从而减少了不同生成任务集上的稳定扩散和DeepFloyd-IF的时间。实验结果表明,该方法在保证图像质量的同时,提高了采样效率。但它也存在一定局限性:尽管我们的方法实现了有效的扩散采样,但是当使用有限数量(如5)的采样步骤时,它面临着生成质量的挑战。
进一步引入分类指导模块和混合损失函数,以产生更准确的位置感知和边界感知分割图。 在肝脏和脾脏数据集上的实验结果表明,UNet 3+超越了所有以前的最新方法,突出了器官并产生了连贯的边界。 5.致谢 这项工作部分得到了浙江实验室重大科研项目的资助,资助号为2018DG0ZX01,部分得到了杭州市重点科技创新支持计划的资助,获...
本实验基于FNC(全卷积神经网络)及PASCAL-VOC数据集做图像语义分割。图像语义分割(Semantic Segmentation)是图像处理和是机器视觉技术中关于图像理解的重要一环,也是 AI 领域中一个重要的分支。语义分割即是对图像中每一个像素点进行分类,确定每个点的类别(如属于背景、人或车等),从而进行区域划分。目前,语义分...
从运行结果可以看出,用Unet网络训练目标数据集,可以对数据集的道路目标实现准确的检测。 从大量的数据集中进行测试,在CPU上运行,Unet网络测试数据用了将近10小时的训练时间。但是,得到的目标检测的结果是非常准确的。文章标签: 计算机视觉 关键词: 网络目标检测 目标检测网络 网络实验 实验网络 图像处理网络 游客...
我们引入了一种新颖的集成机制,在VMamba块内确保编码器和解码器路径之间的无缝连接和信息流动,从而增强了分割性能。我们在公开可用的ACDC MRI心脏分割数据集和Synapse CT腹部分割数据集上进行了实验。结果表明,在相同的超参数设置下,Mamba-UN...
更重要的是,引入了一种基于频域的计算方法来减少计算量。实验结果表明,与八种优秀的方法相比,所提出的方法在准确性和速度方面都有显著提升。 1 Introduction 早期的去模糊方法主要关注非盲去模糊,恢复已知模糊核的图像。Pan等人[1]通过计算模糊图像中暗通道的稀疏性来准确计算模糊核,以恢复清晰图像。然而,这些传统方法...