Decoder的工作机制 训练过程: 输入处理:Decoder的输入包括两部分:一是Encoder的输出(即整个输入序列的编码),二是Decoder自身的输入(通常是目标序列的已生成部分,在训练初期可以是目标序列的左移版本,即包含起始符和已知的目标词)。 掩码自注意力(Masked Self-Attention):与Encoder的自注意力不同,Decoder的自注意力机制...
理解Transformer模型中的Encoder和Decoder是掌握其工作原理的关键。我们可以通过以下几个方面来解释它们: EncoderEncoder的主要任务是将输入序列(通常是文本)转换为一组特征表示(也称为编码)。这些特征表示包…
最初的 Transformer 是基于在机器翻译任务中广泛使用的 encoder-decoder 架构。 如上图所示,encoder 由许多堆叠在一起的 encoder 层组成。 让我们将这些 encoder 层放大。 从上图可以看到,每个 encoder 层接收由 embedding 组成的序列,然后将序列输入子层: 多头注意力(multi-head self-attention)层 应用于每个输入 ...
这样看在Transformer中主要部分其实就是编码器Encoder与解码器Decoder两个部分; 编码器: 编码器部分是由多头注意力机制,残差链接,层归一化,前馈神经网络所构成。 先来了解一下多头注意力机制,多头注意力机制是由多个自注意力机制组合而成。 自注意力机制: 我们的输入是词嵌入向量与位置编码所结合而成的一种编码将其...
几乎所有主流的大模型都是基于 Transformer 网络架构构建的,Transformer 的重要性不言而喻。大模型可以类比人类的大脑,那么 Transformer 就可以类比人类大脑中的神经网络结构。 Transformer 网络结构最核心的组成部分为:编码器(Encoder)和解码(Decoder)。 编码器负责提取信息,通过细致分析输入文本,理解文本中各个元素的含义...
Decoder:Transformer中的Decoder是用于生成输出序列的模块。它接受Encoder的输出,以及前面已经生成的部分输出序列作为输入。Decoder的主要任务是生成下一个位置的词,直到整个序列生成完成。Decoder同样也是由多层的自注意力机制和全连接层组成,但相比于Encoder还加入了一个额外的注意力机制,用于将Encoder输出的信息融合到生成过...
中我们仅仅使用了Transformer的encoder进行编码,然后直接flatten再使用一个MLP得到预测结果,而不是使用decoder来进行解码得到输出。 在这篇文章中,将详细讲解Transformer完整的Encoder-Decoder架构在时间序列预测上的应用。 II. Transformer 先给出完整的模型定义代码: class TransformerModel(nn.Module): def __init__(sel...
Transformer是在2017年由谷歌提出的,当时应用在机器翻译场景。从结构上来看,它分为Encoder 和 Decoder ...
大模型架构之争:Transformer的Encoder与Decoder之差异解析 Transformer架构的崛起,已经超越了CNN、RNN、LSTM和GRU的传统界限,引发了深度学习领域的广泛关注。如今,LLM领域正围绕encoder-only、encoder-decoder与decoder-only三种设计展开激烈的讨论。BERT曾引领encoder-only的热潮,然而,T5和GPT系列,特别是GPT...
4.1 从功能角度,Transformer Encoder的核心作用是提取特征,也有使用Transformer Decoder来提取特征。例如,一个人学习跳舞,Encoder是看别人是如何跳舞的,Decoder是将学习到的经验和记忆,展现出来 4.2 从结构角度,如图5所示,Transformer Encoder = Embedding + Positional Embedding + N*(子Encoder block1 + 子Encoder block...