理解Transformer模型中的Encoder和Decoder是掌握其工作原理的关键。我们可以通过以下几个方面来解释它们: Encoder Encoder的主要任务是将输入序列(通常是文本)转换为一组特征表示(也称为编码)。这些特征表示包含了输入序列的语义信息,供Decoder在生成输出序列时参考。 输入嵌入(Input Embedding):首先,输入的每个单词或符号通...
这样看在Transformer中主要部分其实就是编码器Encoder与解码器Decoder两个部分; 编码器: 编码器部分是由多头注意力机制,残差链接,层归一化,前馈神经网络所构成。 先来了解一下多头注意力机制,多头注意力机制是由多个自注意力机制组合而成。 自注意力机制: 我们的输入是词嵌入向量与位置编码所结合而成的一种编码将其...
特别是在自然语言处理(NLP)领域,Transformer已经成为许多先进模型的基础。这种架构的关键在于其Encoder和Decoder的设计,它们协同工作,使得模型能够理解并生成自然语言文本。 一、Encoder:输入序列的编码器 Encoder是Transformer架构中的一部分,主要负责将输入序列(如句子中的单词)转换成内部表示(或称为隐藏表示)。这个过程始...
几乎所有主流的大模型都是基于 Transformer 网络架构构建的,Transformer 的重要性不言而喻。大模型可以类比人类的大脑,那么 Transformer 就可以类比人类大脑中的神经网络结构。 Transformer 网络结构最核心的组成部分为:编码器(Encoder)和解码(Decoder)。 编码器负责提取信息,通过细致分析输入文本,理解文本中各个元素的含义,...
在深度学习和自然语言处理(NLP)领域,Transformer模型以其卓越的性能和广泛的应用而著称。不同于传统的循环神经网络(RNN)或卷积神经网络(CNN),Transformer完全基于自注意力(Self-Attention)机制,通过Encoder和Decoder两个核心组件实现了对序列数据的高效处理。本文将详细探讨Transformer中Encoder与Decoder在训练和推理过程中的...
Transformer的Encoder-Decoder编码器-解码器结构,这种结构被广泛应用于处理序列格式的数据(Seq2Seq);编码器和解码器是其组成部分的核心结构。 编码的过程是一个模式提取的过程,它的作用是把输入句子的特征提取出来;比如句子的文字,语义关系等;而解码的过程是一个模式重建的过程,它是根据编码器获取的模式特征生成新的我...
最初的 Transformer 是基于在机器翻译任务中广泛使用的 encoder-decoder 架构。 如上图所示,encoder 由许多堆叠在一起的 encoder 层组成。 让我们将这些 encoder 层放大。 从上图可以看到,每个 encoder 层接收由 embedding 组成的序列,然后将序列输入子层: ...
想更好地理解BERT,要先从它的主要部件-Transformer入手,同时,也可以延伸到相关的Attention机制及更早的Encoder-Decoder架构。本文参考了网上一些写得比较好的博文,梳理了从Encoder-Decoder到Attention机制、Transformer的应用和发展(着重讲解Attention机制和Transformer,想更深入了解Encoder-Decoder结构可以跳转到对应章节的参考...
最初的Transformer是基于广泛应用在机器翻译领域的Encoder-Decoder架构: Encoder: 将由token 组成的输入序列转成由称为隐藏状态(hidden state)或者上下文(context)的embedding向量组成的序列。 Decoder: 根据Encoder 的隐藏状态迭代生成组成输出序列的 token。
Transformer 中的 Encoder-Decoder 我们知道,Transformer 中的 Attention 是 Self-Attention (自注意力机制),而且是 Multi-Head Attention (多头注意力机制)。 下图可以看到,Source 是由一系列 <Key, Value> 组成,此时给定 Target 中某个元素 Query,通过计算 Query 和 各个 Key 的相似性,得到每个 Key 对 Value ...