什么是Transformer神经网络 | Transformer模型是一种基于注意力机制(Attention Mechanism)的深度学习模型,它主要用于处理自然语言处理(NLP)中的序列数据。Transformer是Google的团队在2017年提出的一种NLP经典模型,模型使用了Self-Attention机制,使得模型可以并行化训练,而且能够拥有全局信息。
1. 自注意力机制:Transformer 模型引入了自注意力机制,使得模型能够在一个序列中同时关注不同位置的信息,从而提高了模型的表示能力和学习效率。这种机制使模型能够更好地捕获序列中的长期依赖关系和模式。 2. 并行计算:不同于循环神经网络(RNN)和长短期记忆网络(LSTM)需要按顺序处理序列数据。由于自注意力机制的特性...
什么是transformer | Transformer是一种深度学习模型架构,最初由Google的研究团队于2017年提出,用于解决自然语言处理(NLP)中的序列到序列(Seq2Seq)问题。Transformer模型的核心是self-attention机制,能够高效地学习输入序列中的长距离依赖关系。 与传统的RNN和CNN不同,Transformer采用了一种基于注意力机制的方法来处理输入...