Transformer模型的核心是self-attention机制,能够高效地学习输入序列中的长距离依赖关系。与传统的RNN和CNN不同,Transformer采用了一种基于注意力机制的方法来处理输入序列,使得模型可以并行化处理序列中的信息。该模型在机器翻译、文本生成、语音识别等NLP任务中取得了非常好的效果,并且在计算效率上优于传统的序列模型,例如...
什么是Transformer神经网络 | Transformer模型是一种基于注意力机制(Attention Mechanism)的深度学习模型,它主要用于处理自然语言处理(NLP)中的序列数据。Transformer是Google的团队在2017年提出的一种NLP经典模型,模型使用了Self-Attention机制,使得模型可以并行化训练,而且能够拥有全局信息。