"Accuracy: "+str(round((tp+tn)/(tp+fp+fn+tn),)) 召回率(Recall):针对数据集中的所有正例(TP+FN)而言,模型正确判断出的正例(TP)占数据集中所有正例的比例.FN表示被模型误认为是负例但实际是正例的数据.召回率也叫查全率,以物体检测为例,我们往往把图片中的物体作为正例,此时召回率高代表着模型可以...
2. 先看看各类别TP、FP、FN、TN的计算 3. macro-F1、weighted-F1、micro-F1 3.1 macro-F1 3.2 weighted-F1 3.3 micro-F1 4. 趁热打铁,接着说说AUC、ROC 参考 网上也有许多文章关于单个指标的解析,讲的也很好,但有点碎片化。一直想把平常用来评价模型的一些指标,从来源到去路的梳理一遍。于是就花了些时间...
TP FP TN FN TP+FP=预测结果数 TP+FN=GT总数量 TP:和预测结果的IOU>0.5的GT数量,且分类正确。如果多个预测结果与GT的iou>0.5,只取最大iou的预测为tp,其它为fp FP:和GT的iou<=0.5,且分类正确的预测结果数量 FN: 没有检测到的 GT 的数量 (以person为例,算法1是:取得所有预测为person的bbox,和gt算,...
1、假阳率:False Positive Rate = 实负测正 / 实负 = FP / (FP + TN) 2、假阴率:False Negative Rate = 实正测负 / 实正 = FN / (TP + FN) 3、真阳率:True Positive Rate = 实正测正 / 实正 = TP / (TP + FN) 4、真阴率:True Negative Rate = 实负测负 / 实负 = TN / (FP...
进行点乘来模拟TP,FP,FN,TN这四个值:tp^=∑S(y^)⋅yfp^=∑S(y^)⋅(1−y)fn^=∑(...
1. TP TN FP FN GroundTruth 预测结果 TP(True Positives): 真的正样本 = 【正样本 被正确分为 正样本】 TN(True Negatives): 真的负样本 = 【负样本 被正确分为 负样本】 FP(False Positives): 假的正样本 = 【负样本 被错误分为 正样本】 ...
1. TP TN FP FN GroundTruth 预测结果 TP(True Positives): 真的正样本 = 【正样本 被正确分为 正样本】 TN(True Negatives): 真的负样本 = 【负样本 被正确分为 负样本】 FP(False Positives): 假的正样本 = 【负样本 被错误分为 正样本】 ...
【陈工笔记】# 关于常见实验指标(灵敏度、特异性等),如何更容易理解TP\TN\FP\FN? #,程序员大本营,技术文章内容聚合第一站。
根据混淆矩阵的第一行和第一列,我们可以看到TP为1,FP为1,TN为2,FN为0。 同样地,我们可以计算出类别B和类别C的TP、FP、TN和FN。 通过以上的计算,我们可以获得所有类别上的TP、FP、TN和FN的值,从而更好地了解我们的模型在多分类问题中的性能。 需要注意的是,在多分类问题中,通常我们会计算每个类别的指标,...
机器学习基础⼀(TP,TN,FP,FN等)TP:预测为正向(P),实际上预测正确(T),即判断为正向的正确率 TN:预测为负向(N),实际上预测正确(T),即判断为负向的正确率 FP:预测为正向(P),实际上预测错误(F),误报率,即把负向判断成了正向 FN:预测为负向(N),实际上预测错误(F),漏报...