1. 先说下相关指标、公式 2. 先看看各类别TP、FP、FN、TN的计算 3. macro-F1、weighted-F1、micro-F1 3.1 macro-F1 3.2 weighted-F1 3.3 micro-F1 4. 趁热打铁,接着说说AUC、ROC 参考 网上也有许多文章关于单个指标的解析,讲的也很好,但有点碎片化。一直想把平常用来评价模型的一些指标,从来源到去路的...
FP,FN,TN这四个值:tp^=∑S(y^)⋅yfp^=∑S(y^)⋅(1−y)fn^=∑(1−S(y^))⋅...
TP FP TN FN TP+FP=预测结果数 TP+FN=GT总数量 TP:和预测结果的IOU>0.5的GT数量,且分类正确。如果多个预测结果与GT的iou>0.5,只取最大iou的预测为tp,其它为fp FP:和GT的iou<=0.5,且分类正确的预测结果数量 FN: 没有检测到的 GT 的数量 (以person为例,算法1是:取得所有预测为person的bbox,和gt算,...
1、假阳率:False Positive Rate = 实负测正 / 实负 = FP / (FP + TN) 2、假阴率:False Negative Rate = 实正测负 / 实正 = FN / (TP + FN) 3、真阳率:True Positive Rate = 实正测正 / 实正 = TP / (TP + FN) 4、真阴率:True Negative Rate = 实负测负 / 实负 = TN / (FP...
【陈工笔记】# 关于常见实验指标(灵敏度、特异性等),如何更容易理解TP\TN\FP\FN? #,程序员大本营,技术文章内容聚合第一站。
TN(True Negatives): 真的负样本 = 【负样本 被正确分为 负样本】 FP(False Positives): 假的正样本 = 【负样本 被错误分为 正样本】 FN(False Negatives):假的负样本 = 【正样本 被错误分为 负样本】 2. Precision(精度)和 Recall(召回率) ...
FPR=FP/(FP+TN)=1-specify (参考混淆矩阵) FNR(False Negative Rate):假阴性率,即漏诊率,有病检测出没病占真正有病的比例: FNR=FN/(TP+FN)=1-sensitivity=1-recall ROC曲线 按照模型输出的正例预测概率排序,顺序为从高到低,之后将每个概率值作为阈值,得到多个混淆矩阵,对应多对TPR和FPR,将FPR的值作为...
一、TP、TN、FP、FN等的记忆。 二、mAP、mmAP之间的联系以及它们的计算公式。 一、TP、TN、FP、FN的记忆。 这几个值的全称分别是: FP:假正例 FN:假负例 TP:真正例 TN:真负例。 一下子记不住也没关系. 接下来介绍一下我是怎么记忆的: 首先看第二个字母,它表示预测的结果(也就是预测为真或预测为假...
其中,TP:样本为正,预测结果为正;FP:样本为负,预测结果为正;TN:样本为负,预测结果为负;FN:样本为正,预测结果为负。 准确率、精准率和召回率的计算公式如下: 准确率(accuracy): (TP+TN)/(TP+FP+TN+FN) 精准率(precision):TP/ (TP+FP),正确预测为正占全部预测为正的比例 召回率(recall):TP ...