torch.empty_strided(size, stride) is equivalent to torch.empty(size).as_strided(size, stride). Warning More than one element of the created tensor may refer to a single memory location. As a result, in-place operations (especially ones that are vectorized) may result in incorrect behavior...
最近要用到高维的tensor相乘,发现不同方法实现效率上真的差好多(省流可以直接看实验3)。 最省流:unsqueeze会增加矩阵维度,导致更慢的计算。 本人是新手,欢迎批评指正! 实验1: 输入张量 X 的形状为 [B, channel, d_model],B为batch_size,channel为通道数,d_model为特征数 权重张量 W 的形状为 [channel, d...
output = tp_model(inp) rank_log(_rank, logger,f"iter {i} memory:{torch.cuda.memory_allocated()/1024/1024/1024} GB") output.sum().backward() optimizer.step() rank_log(_rank, logger, f"Tensor Parallel iter {i} completed") rank_log(_rank, logger, "Tensor Parallel training completed...
new_full(size, fill_value, dtype=None, device=None, requires_grad=False) → Tensor new_empty(size, dtype=None, device=None, requires_grad=False) → Tensor new_ones(size, dtype=None, device=None, requires_grad=False) → Tensor new_zeros(size, dtype=None, device=None, requires_grad=Fals...
1.torch.set_default_tensor_type(t) 这个方法的意思是设置PyTorch中默认的浮点类型,注意这个方法只可以设置浮点数的默认类型,不可以设置整形的默认类型),可以使用torch.get_default_dtype()来获取设置的默认浮点类型。 在CPU上,t默认是torch.FloatTensor,还可以是torch.DoubleTensor 在GPU上,t默认是torch.cuda.Fl...
不推荐使用与输入大小(torch.Size([]))不同的目标大小(torch.Size([1]))EN笔者很喜欢CenterNet极简的网络结构,CenterNet只通过FCN(全卷积)的方法实现了对于目标的检测与分类,无需anchor与nms等复杂的操作高效的同时精度也不差。同时也可以很将此结构简单的修改就可以应用到人体姿态估计与三维目标检测之中。
torch.FatalError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch_1524590031827/work/aten/src/THC/generic/THCStorage.cu:58 想必这是所有炼丹师们最不想看到的错误,没有之一.显卡、显卡驱动、显存、GPU、CUDA、cuDNN 显卡 Video card,Graphics card,又叫显示接口卡,是...
🐛 Bug Hello, I'm having a problem of loading a serialized tensor from a file. My tensor shape is [309000001, 2, 5] the dtype is torch.int8 When I deserialize the tensor using torch.load(), it yell "invalid memory size". The line that it ...
When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices. See below for examples. Note This method modifies the module in-place. Parameters device (torch.device)– the desired device...
If it doesn’t fit in memory try reducing the history size, or use a different algorithm. Parameters lr (float)– learning rate (default: 1) max_iter (int)– maximal number of iterations per optimization step (default: 20) max_eval (int)– maximal number of function evaluations per ...