推荐使用to(device)的方式,主要原因在于这样的编程方式更加易于扩展,而cuda()必须要求机器有GPU,否则需要修改所有代码,to(device)的方式则不受此限制,device既可以是CPU也可以是GPU;
在训练网路时,采用GPU进行加速,pytorch提供了一个功能,能够一条语句切换在CPU、GPU上运算,如果在GPU上运行,device = torch.device( ‘cuda:0’ ), (后面的0是cuda的编号),如果在CPU上运行,将‘cuda’改成‘GPU’即可。对net搬到GPU上去,使用net = MLP().to(device), 将loss也使用.to(device)搬到GPU上去。
pytorch中.to(device)和.cuda()的区别说明 原理 .to(device) 可以指定CPU 或者GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 单GPU或者CPU model.to(device)#如果是多GPU if torch.cuda.device_count() > 1:model = nn.DataParallel(model,device_ids=[0,1,...
把数据从CPU迁移到GPU时,可以用.cuda()方法,也可以用.to(device)方法。示例如下。 .cuda()方法 import torch import time t = time.time() b = torch.rand([1024, 1024, 10]) b = b.cuda() p
举两个代码栗子来说明二维数组在CUDA中的使用(亲测可用): 1. 普通二维数组示例: 输入:二维数组A...
而且在左边的空白处(margin),可以显示调试代码中非常有用的显示断点以及显示当前运行行等功能。而且,自...
device = torch.device('cuda:{}'.format(device_id)) with torch.cuda.device(device): load_tensorrt_plugin() # create builder and network ... engine = builder.build_engine(network, config) assert engine is not None, 'Failed to create TensorRT engine' return engine but failed with log: l...
import torch pipeline.to(torch.device("cuda")) to my code does not allocate the pipeline to the GPU anymore. I have tried the following: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # returns cuda pipeline = Pipeline.from_pretrained( 'pyannote/speaker-diarization...
CUDAMemoryCopyToDevice[mem] force copiesCUDAMemoryfrom the CPU to the GPU. 更多信息和选项 范例 基本范例(1) First, load theCUDALinkapplication: In[1]:= This loads aRange[10]list intoCUDALink: In[2]:= Out[2]= This gives information about the returned memory; notice how the"DeviceStatus"...
failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected 这就有点奇怪了,刚开始以为是程序停止了但GPU还被占用,于是用nvidia-smi查看了一下,发现报错 Unable to determine the device handle for GPU 0000:01:00.0: GPU is lost. Reboot the system to recover this GPU ...