简介: 【PyTorch】cuda()与to(device)的区别 问题 PyTorch中的Tensor要想在GPU中运行,可以有两种实现方式,其一是x.cuda(),其二是x.to(device)。两种方式均能实现GPU上运行,那么二者的区别是什么呢? 方法 import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' a = torch.randn([3, ...
推荐使用to(device)的方式,主要原因在于这样的编程方式更加易于扩展,而cuda()必须要求机器有GPU,否则需要修改所有代码,to(device)的方式则不受此限制,device既可以是CPU也可以是GPU;
.cuda() 只能指定GPU #指定某个GPUos.environ['CUDA_VISIBLE_DEVICE']='1'model.cuda()#如果是多GPUos.environment['CUDA_VISIBLE_DEVICES'] ='0,1,2,3'device_ids = [0,1,2,3] net = torch.nn.Dataparallel(net, device_ids =device_ids) net = torch.nn.Dataparallel(net)# 默认使用所有的devic...
【摘要】 .to(device) 可以指定CPU 或者GPU 详见代码: device = torch.device("cuda:0" if torch.cuda.is_available() else "cp... .to(device) 可以指定CPU 或者GPU 详见代码: device=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")# 单GPU或者CPUmodel.to(device)#如果是多GPUiftorch...
把数据从CPU迁移到GPU时,可以用.cuda()方法,也可以用.to(device)方法。示例如下。 .cuda()方法 import torch import time t = time.time() b = torch.rand([1024, 1024, 10]) b = b.cuda() p
pytorch中.to(device)和.cuda()的区别说明 原理 .to(device) 可以指定CPU 或者GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 单GPU或者CPU model.to(device)#如果是多GPU if torch.cuda.device_count() > 1:model = nn.DataParallel(model,device_ids=[0,1,...
[4., 5., 6.]], device='cuda:0') 1. 2. 3. 4. 在上述代码中,我们首先创建了一个形状为(2, 3)的张量x,然后使用x.to(device)将其转换为GPU可用的格式。其中,device是一个torch.device对象,可以使用torch.cuda.is_available()函数来判断是否支持GPU加速。
一、.to(device) 可以指定CPU 或者GPU device = torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")#单GPU或者CPUmodel.to(device)#如果是多GPUiftorch.cuda.device_count() > 1: model= nn.DataParallel(model,device_ids=[0,1,2]) ...
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 对于变量,需要进行赋值操作才能真正转到GPU上: all_input_batch=all_input_batch.to(device) 对于模型,不需要进行赋值: model = TextRNN() model.to(device) 对模型进行to(device),还有一种方法,就是在定义模型的时候全部对模型...
CUDA用于并行计算非常方便,但是GPU与CPU之间的交互,比如传递参数等相对麻烦一些。在写CUDA核函数的时候...